References

  1. J.H. Qu, Research progress of novel adsorption processes in water purification, J. Environ. Sci., 20 (2008) 1–13.
  2. I. Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113 (2012) 170–183.
  3. L. Wang, G.C. Chen, C. Ling, J.F. Zhang, K. Szerlag, Adsorption of ciprofloxacin on to bamboo charcoal: effects of pH, salinity, cations, and phosphate, Environ. Prog. Sustainable, 36 (2017) 1108–1115.
  4. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  5. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19–33.
  6. D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman Jr., Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent — a critical review, Bioresour. Technol., 160 (2014) 191–202.
  7. A.U. Rajapaksha, S.S. Chen, D.C.W. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok., Engineered/ designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification, Chemosphere, 148 (2016) 276–291.
  8. G.T. Li, Y.P. Guo, W.G. Zhao, Efficient adsorption removal of tetracycline by layered carbon particles prepared from seaweed biomass, Environ. Prog. Sustainable, 36 (2017) 59–65.
  9. J. Lehmann, A handful of carbon, Nature, 447 (2007) 143–144.
  10. J.W. Lee, B. Hawkins, D.M. Day, D.C. Reicosky, Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration, Energy Environ. Sci., 3 (2010) 1695–1705.
  11. M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 44 (2010) 1247–1253.
  12. L. Shi, G. Zhang, D. Wei, T. Yan, X.D. Xue, S.S. Shi, Q. Wei, Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions, J. Mol. Liq., 198 (2014) 334–340.
  13. Q.Y. Xu, S.Q. Tang, J.C. Wang, J.H. Ko, Pyrolysis kinetics of sewage sludge and its biochar characteristics, Process Saf. Environ., 115 (2018) 49–56.
  14. G.F. Song, Y.J. Guo, G.T. Li, W.G. Zhao, Y. Yu, Comparison for adsorption of tetracycline and cefradine using biochar derived from seaweed Sargassum sp., Desal. Water Treat., 160 (2019) 316–324.
  15. G.T. Li, W.Y. Zhu, C.Y. Zhang, S. Zhang, L.L. Liu, L.F. Zhu, W.G. Zhao, Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar, Bioresour. Technol., 206 (2016) 16–22.
  16. G.T. Li, W.Y. Zhu, L.F. Zhu, X.Q. Chai, Effect of pyrolytic temperature on the adsorptive removal of p-benzoquinone, tetracycline, and polyvinyl alcohol by the biochars from sugarcane bagasse, Korean J. Chem. Eng., 33 (2016) 2215–2221.
  17. S.S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X.D. Li, Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism, J. Environ. Chem. Eng., 5 (2017) 601–611.
  18. H.R. Yuan, T. Lu, H.Y. Huang, D.D. Zhao, N. Kobayashi, Y. Chen, Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge, J. Anal. Appl. Pyrolysis, 112 (2015) 284–289.
  19. B. Chen, D. Zhou, L. Zhu, Transitional adsorption and partition on nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, Environ. Sci. Technol., 42 (2008) 5137–5143.
  20. M.M. Mian, G. Liu, Sewage sludge-derived TiO2/Fe/Fe3C biochar composite as an efficient heterogeneous catalyst for degradation of methylene blue, Chemosphere, 215 (2019) 101–114.
  21. M. Kithome, J.W. Paul, L.M. Lavkulich, A.A. Bomke, Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite, Soil Sci. Soc. Am. J., 62 (1988) 622–629.
  22. C.W. Cheung, J.F. Porter, G. Mckay, Sorption kinetics for the removal of copper and zinc from effluents using bone char, Sep. Purif. Technol., 19 (2000) 55–64.
  23. S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlinga, 24 (1898) 1–39.
  24. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption process, Process Biochem., 34 (1999) 451–65.
  25. I. Langmuir, Kinetic model for the sorption of dye aqueous solution by clay-wood sawdust mixture, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  26. H.M.F. Freundlich, Uber die adsorption in lasungen, J. Phys. Chem., 57 (1906) 385–470.
  27. Y.H. Li, Q.J. Du, T.H. Liu, X.J. Peng, J.J. Wang, J.K. Sun, Y.H. Wang, S.L. Wu, Z.H. Wang, Y.Z. Xia, L.H. Xia, Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes, Chem. Eng. Res. Des., 91 (2013) 361–368.
  28. K. Gobi, M.D. Mashitah, V.M. Vadivelu, Adsorptive removal of Methylene Blue using novel adsorbent from palm oil mill effluent waste activated sludge: equilibrium, thermodynamics and kinetic studies, Chem. Eng. J., 171 (2011) 1246–1252.
  29. L. Sun, S.G. Wan, W.S. Luo, Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies, Bioresour. Technol., 140 (2013) 406–413.
  30. R.P. Han, W.H. Zou, W.H. Yu, S.J. Cheng, Y.F. Wang, J. Shi, Biosorption of methylene blue from aqueous solution by fallen phoenix tree’s leaves, J. Hazard. Mater., 141 (2007) 156–162.
  31. G. Moussavi, R. Khosravi, The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste, Chem. Eng. Res. Des., 89 (2011) 2182–2189.