1. T. Pankratz, IDA Desalination Yearbook, Media Analytics Ltd., Oxford, 2010–2011.
  2. M. Elimelech, W.A Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  3. J. Kim, K. Park, D. Ryook, S. Hong, A comprehensive review of energy consumption of seawater reverse osmosis desalination plants, Appl. Energy, 254 (2019) 113652.
  4. N. Voutchkov, Energy use for membrane seawater desalinationcurrent status and trends, Desalination, 431 (2018) 2–14.
  5. A.K. Pabby, S.S.H. Rizvi, A.M.S. Requena, Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, CRC Press, 2015.
  6. K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination-development to date and future potential, Membr. Sci., 370 (2011) 1–22.
  7. W. Lawler, Z. Bradford-Hartke, M.J. Cran, M.C. Duke, G. Leslie, B.P. Ladewig, P. Le-Clech, Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes, Desalination, 299 (2012) 103–112.
  8. F.A. Abd El Aleem, K.A. Al-Sugair, M.I. Alahmad, Biofouling problems in membrane processes for water desalination and reuse in Saudi Arabia, Int. Biodeterior. Biodegrad., 41 (1998) 19–23.
  9. T. Nguyen, F.A. Roddick, L. Fan, Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures, Membranes (Basel)., 2 (2012) 804–840.
  10. E.C. de Paula, M. Amaral, Extending the life-cycle of reverse osmosis membranes: a review, Waste Manage. Res., 35 (2017) 456–470.
  11. R. Bernstein, S. Belfer, V. Freger, Improving performance of spiral wound RO elements by in situ concentration polarizationenhanced radical graft polymerization, Membr. Sci., 405–406 (2012) 79–84.
  12. K.Y. Jee, D.H. Shin, Y.T. Lee, Surface modification of polyamide RO membrane for improved fouling resistance, Desalination, 394 (2016) 131–137.
  13. O. Choi, P.G. Ingole, H.-K. Lee, Preparation and characterization of thin film composite membrane for the removal of water vapor from the flue gas at bench scale, Sep. Purif. Technol., 211 (2019) 401–407.
  14. P.G. Ingole, W.K. Choi, G.B. Lee, H.K. Lee, Thin-filmcomposite hollow-fiber membranes for water vapor separation, Desalination, 403 (2017) 12–23.
  15. T. Fujioka, L.D. Nghiem, Modification of a polyamide reverse osmosis membrane by heat treatment for enhanced fouling resistance, Water Sci. Technol. Water Supply, 13 (2013) 1553–1559.
  16. S. Inukai, R. Cruz-Silva, J. Ortiz-Medina, A. Morelos-Gomez, K. Takeuchi, T. Hayashi, A. Tanioka, T. Araki, S. Tejima, T. Noguchi, M. Terrones, M. Endo, High-performance multifunctional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite, Sci. Rep., 5 (2015) 13562
  17. J. Kim, S. Hong, A novel single-pass reverse osmosis configuration for high-purity water production and low energy consumption in seawater desalination, Desalination, 429 (2018) 142–154.
  18. J. Kim, S. Hong, Optimizing seawater reverse osmosis with internally staged design to improve product water quality and energy efficiency, Membr. Sci., 568 (2018) 76–86.
  19. T.A. Otitoju, R.A. Saari, A.L. Ahmad, Progress in the modification of reverse osmosis (RO) membranes for enhanced performance, Ind. Eng. Chem., 67 (2018) 52–71.
  20. T. Tsuru, S. Sasaki, T. Kamada, T. Shintani, T. Ohara, H. Nagasawa, K. Nishida, M. Kanezashi, T. Yoshioka, Multilayered polyamide membranes by spray-assisted 2-step interfacial polymerization for increased performance of trimesoyl chloride (TMC)/m-phenylenediamine (MPD)-derived polyamide membranes, J. Membr. Sci., 446 (2013) 504–512.
  21. W. Xie, G.M. Geise, B.D. Freeman, H.S. Lee, G. Byun, J.E. McGrath, Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine, J. Membr. Sci., 403–404 (2012) 152–161.
  22. A.H.M. El-Aassar, Polyamide thin film composite membranes using interfacial polymerization: synthesis, characterization and reverse osmosis performance for water desalination, Basic Appl. Sci., 6 (2012) 382–391.
  23. G. Kang, C. Gao, W. Chen, X. Jie, Y. Cao, Q. Yuan, Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane, J. Membr. Sci., 300 (2007) 165–171.
  24. M. Wilf, C. Bartels, Optimization of seawater RO systems design, Desalination, 173 (2005) 1–12.
  25. C. Hobbs, S. Hong, J. Taylor, Effect of surface roughness on fouling of RO and NF membranes during filtration of a high organic surficial groundwater, Water Supply Res. Technol., 55 (2006) 559–570.
  26. E.M. Vrijenhoek, S. Hong, M. Elimelech, Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes, J. Membr. Sci., 188 (2001) 115–128.
  27. C.J. Gabelich, J.C. Frankin, F.W. Gerringer, K.P. Ishida, I.H. Suffet, Enhanced oxidation of polyamide membranes using monochloramine and ferrous iron, J. Membr. Sci., 258 (2005) 64–70.