1. G. Thompson, J. Swain, M. Kay, C. Forster, The treatment of pulp and paper mill effluent: a review, Bioresour. Technol., 77 (2001) 275–286.
  2. M. Ali, T. Sreekrishnan, Aquatic toxicity from pulp and paper mill effluents: a review, Adv. Environ. Res., 5 (2001) 175–196.
  3. J.A. Rintala, J.A. Puhakka, Anaerobic treatment in pulp-and paper-mill waste management: a review, Bioresour. Technol., 47 (1994) 1–18.
  4. G. Ginni, S. Adishkumar, J. Rajesh Banu, N. Yogalakshmi, Treatment of pulp and paper mill wastewater by solar photo-Fenton process, Desal. Water Treat., 52 (2014) 2457–2464.
  5. T.Y. Wu, N. Guo, C.Y. Teh, J.X.W. Hay, Advances in Ultrasound Technology for Environmental Remediation, Springer Science & Business Media, Dordrecht Netherlands, 2012.
  6. Z. Chi, Z. Wang, Y. Liu, G. Yang, Preparation of organosolv lignin-stabilized nano zero-valent iron and its application as granular electrode in the tertiary treatment of pulp and paper wastewater, Chem. Eng. J., 331 (2018) 317–325.
  7. M. Vepsäläinen, H. Kivisaari, M. Pulliainen, A. Oikari, M. Sillanpää, Removal of toxic pollutants from pulp mill effluents by electrocoagulation, Sep. Purif. Technol., 81 (2011) 141–150.
  8. A. Izadi, M. Hosseini, G. Najafpour Darzi, G. Nabi Bidhendi, F. Pajoum Shariati, M.R. Mosaddeghi, Perspectives on membrane bioreactor potential for treatment of pulp and paper industry wastewater: a critical review, J. Appl. Biotechnol. Rep., 5 (2018) 139–150.
  9. A. Latorre, A. Malmqvist, S. Lacorte, T. Welander, D. Barceló, Evaluation of the treatment efficiencies of paper mill whitewaters in terms of organic composition and toxicity, Environ. Pollut., 147 (2007) 648–655.
  10. A. Izadi, M. Hosseini, G.N. Darzi, G.N. Bidhendi, F.P. Shariati, Treatment of paper-recycling wastewater by electrocoagulation using aluminum and iron electrodes, J. Environ. Health. Sci. Eng., 16 (2018) 257–264.
  11. A. Izadi, M. Hosseini, G.N. Darzi, G.N. Bidhendi, F.P. Shariati, recycling wastewater treatment using Ocimum basilicum L. along with alum: Optimization by response surface methodology (RSM), Desal. Water Treat., 116 (2018) 205–213.
  12. M. Kamali, Z. Khodaparast, Review on recent developments on pulp and paper mill wastewater treatment, Ecotoxicol. Environ. Saf., 114 (2015) 326–342.
  13. Y. Zhang, C. Ma, F. Ye, Y. Kong, H. Li, The treatment of wastewater of paper mill with integrated membrane process, Desalination, 236 (2009) 349–356.
  14. Y. Tsang, F. Hua, H. Chua, S. Sin, Y. Wang, Optimization of biological treatment of paper mill effluent in a sequencing batch reactor, Biochem. Eng., 34 (2007) 193–199.
  15. T. Leiviskä, H. Nurmesniemi, R. Pöykiö, J. Rämö, T. Kuokkanen, J. Pellinen, Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD, and P in pulp and paper mill effluent, Water Res., 42 (2008) 3952–3960.
  16. A. Drews, H. Evenblij, S. Rosenberger, Potential and drawbacks of microbiology–membrane interaction in membrane bioreactors, Environ. Prog., 24 (2005) 426–433.
  17. D. Bolzonella, F. Fatone, S. di Fabio, F. Cecchi, Application of membrane bioreactor technology for wastewater treatment and reuse in the Mediterranean region: focusing on removal efficiency of non-conventional pollutants, J. Environ. Manage., 91 (2010) 2424–2431.
  18. X. Qu, W. Gao, M. Han, A. Chen, B. Liao, Integrated thermophilic submerged aerobic membrane bioreactor and electrochemical oxidation for pulp and paper effluent treatment–towards system closure, Bioresour. Technol., 116 (2012) 1–8.
  19. N. Galil, Y. Levinsky, Sustainable reclamation and reuse of industrial wastewater including membrane bioreactor technologies: case studies, Desalination, 202 (2007) 411–417.
  20. J.C.T. Dias, R.P. Rezende, C.M. Silva, V.R. Linardi, Biological treatment of kraft pulp mill foul condensates at high temperatures using a membrane bioreactor, Process. Biochem., 40 (2005) 1125–1129.
  21. B. Liao, K. Xie, H. Lin, D. Bertoldo, Treatment of kraft evaporator condensate using a thermophilic submerged anaerobic membrane bioreactor, Water Sci. Technol., 61 (2010) 2177–2183.
  22. F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, F. Yang, Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material, Water Res., 43 (2009) 1489–1512. Fig. 5. TMP profile of different operating conditions.
  23. A. Drews, Membrane fouling in membrane bioreactors— characterization, contradictions, cause and cures, J. Membr. Sci., 363 (2010) 1–28.
  24. G. Belfort, R.H. Davis, A.L. Zydney, The behavior of suspensions and macromolecular solutions in crossflow microfiltration, J. Membr. Sci., 96 (1994) 1–58.
  25. C. Wisniewski, A. Grasmick, Floc size distribution in a membrane bioreactor and consequences for membrane fouling, Colloids Surf., A, 138 (1998) 403–411.
  26. R. Bai, H. Leow, Microfiltration of activated sludge wastewater— the effect of system operation parameters, Sep. Purif. Technol., 29 (2002) 189–198.
  27. N. Yigit, G. Civelekoglu, I. Harman, H. Koseoglu, M. Kitis, Effects of various backwash scenarios on membrane fouling in a membrane bioreactor, Desalination, 237 (2009) 346–356.
  28. E.-J. Lee, K.-Y. Kim, Y.-S. Lee, J.-W. Nam, Y.-S. Lee, H.-S. Kim, A. Jang, A study on the high-flux MBR system using PTFE flat sheet membranes with chemical backwashing, Desalination, 306 (2012) 35–40.
  29. Y. Zhou, Z.-l. Xu, S. Munib, G.-e. Chen, Q. Lu, Sustainable membrane operation design for the treatment of the synthetic coke wastewater in SMBR, Water. Sci. Technol., 60 (2009) 2115–2124.
  30. Q. Liu, X.C. Wang, Y. Liu, H. Yuan, Y. Du, Performance of a hybrid membrane bioreactor in municipal wastewater treatment, Desalination, 258 (2010) 143–147.
  31. L. Rodríguez-Hernández, A. Esteban-García, A. Lobo, J. Temprano, C. Álvaro, A. Mariel, I. Tejero, Evaluation of a hybrid vertical membrane bioreactor (HVMBR) for wastewater treatment, Water. Sci. Technol., 65 (2012) 1109–1115.
  32. Z. Fu, F. Yang, Y. An, Y. Xue, Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic/oxic-membrane bioreactor (A/O-MBR), Biochem. Eng., 43 (2009) 191–196.
  33. J. Li, F. Yang, D.-G. Ohandja, F.-S. Wong, Integration of nitrification and denitrification by combining anoxic and aerobic conditions in a membrane bioreactor, Water. Sci. Technol., 62 (2010) 2590–2598.
  34. F. Yang, Y. Wang, A. Bick, J. Gilron, A. Brenner, L. Gillerman, M. Herzberg, G. Oron, Performance of different configurations of hybrid growth membrane bioreactor (HG-MBR) for treatment of mixed wastewater, Desalination, 284 (2012) 261–268.
  35. L. Holakoo, G. Nakhla, A.S. Bassi, E.K. Yanful, Long term performance of MBR for biological nitrogen removal from synthetic municipal wastewater, Chemosphere, 66 (2007) 849–857.
  36. B. Tang, B. Qiu, S. Huang, K. Yang, L. Bin, F. Fu, H. Yang, Distribution and mass transfer of dissolved oxygen in a multihabitat membrane bioreactor, Bioresour. Technol., 182 (2015) 323–328.
  37. B. Tang, Z. Zhang, X. Chen, L. Bin, S. Huang, F. Fu, H. Yang, C. Chen, Biodiversity and succession of microbial community in a multi-habitat membrane bioreactor, Bioresour. Technol., 164 (2014) 354–361.
  38. A. Izadi, M. Hosseini, G.N. Darzi, G.N. Bidhendi, F.P. Shariati, Performance of an integrated fixed bed membrane bioreactor (FBMBR) applied to pollutant removal from paper-recycling wastewater, Water Resour. Ind., 21 (2019) 100111.
  39. A. Izadi, M. Hosseini, F. Pajoum Shariati, G. Najafpour, Treatment of real paper-recycling wastewater in a novel hybrid airlift membrane bioreactor (HAMBR) for simultaneous removal of organic matter and nutrients, Iran. J. Chem. Chem. Eng., 39 (2019) 1–13.
  40. N. Fallah, B. Bonakdarpour, B. Nasernejad, M.A. Moghadam, Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT), J. Hazard. Mater., 178 (2010) 718–724.
  41. Z. Huang, S.L. Ong, H.Y. Ng, Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling, Water Res., 45 (2011) 705–713.
  42. F. Meng, B. Shi, F. Yang, H. Zhang, Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors, Bioprocess. Biosyst. Eng., 30 (2007) 359–367.
  43. D. Yu, Y. Chen, Y. Wei, J. Wang, Y. Wang, K. Li, Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times, Environ. Sci. Pollut. Res., 24 (2017) 9026–9035.
  44. H.F. Schröder, J. Tambosi, R. Sena, R. Moreira, H. José, J. Pinnekamp, The removal and degradation of pharmaceutical compounds during membrane bioreactor treatment, Water. Sci. Technol., 65 (2012) 833–839.
  45. Q. Jiang, H.H. Ngo, L.D. Nghiem, F.I. Hai, W.E. Price, J. Zhang, S. Liang, L. Deng, W. Guo, Effect of hydraulic retention time on the performance of a hybrid moving bed biofilm reactormembrane bioreactor system for micropollutants removal from municipal wastewater, Bioresour. Technol., 247 (2018) 1228–1232.
  46. F.P. Shariati, M.R. Mehrnia, M.H. Sarrafzadeh, S. Rezaee, A. Grasmick, M. Heran, Fouling in a novel airlift oxidation ditch membrane bioreactor (AOXMBR) at different high organic loading rate, Sep. Purif. Technol., 105 (2013) 69–78.
  47. L. Bertin, S. Berselli, F. Fava, M. Petrangeli-Papini, L. Marchetti, Anaerobic digestion of olive mill wastewaters in biofilm reactors packed with granular activated carbon and “Manville” silica beads, Water Res., 38 (2004) 3167–3178.
  48. W.E. Federation, A.P.H. Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA): Washington, DC, USA, 2005.
  49. B. Tang, X. Chen, B. Qiu, Z. Zhang, L. Bin, S. Huang, F. Fu, Insights into the operational characteristics of a multi-habitat membrane bioreactor: internal variation and membrane fouling, Biochem. Eng. J., 105 (2016) 189–196.
  50. Y.-Y. Qu, J.-T. Zhou, J. Wang, L.-L. Xing, N. Jiang, M. Gou, M.S. Uddin, Population dynamics in bioaugmented membrane bioreactor for treatment of bromoamine acid wastewater, Bioresour. Technol., 100 (2009) 244–248.
  51. S. Basu, S.K. Singh, P.K. Tewari, V.S. Batra, M. Balakrishnan, Treatment of nitrate-rich water in a baffled membrane bioreactor (BMBR) employing waste-derived materials, J. Environ. Manage., 146 (2014) 16–21.
  52. R. Zeng, R. Lemaire, Z. Yuan, J. Keller, A novel wastewater treatment process: simultaneous nitrification, denitrification and phosphorus removal, Water. Sci. Technol., 50 (2004) 163–170.
  53. J. Baeza, D. Gabriel, J. Lafuente, Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP), Process. Biochem., 39 (2004) 1615–1624.
  54. K. Sakai, K. Nakamura, M. Wakayama, M. Moriguchi, Change in nitrite conversion direction from oxidation to reduction in heterotrophic bacteria depending on the aeration conditions, J. Ferment. Bioeng., 84 (1997) 47–52.
  55. W. Chen, J. Liu, The possibility and applicability of coagulation-MBR hybrid system in reclamation of dairy wastewater, Desalination, 285 (2012) 226–231.
  56. F.P. Shariati, M.R. Mehrnia, H. Sarrafzadeh, S. Rezaee, P. Mohtasham, C. Wisniewski, M. Heran, Performance of a novel hybrid membrane bioreactor: effect of bacterial floc size on fouling, Chem. Eng. Trans., 24 (2011) 867–872.
  57. J.-S. Chang, C.-Y. Chang, A.-C. Chen, L. Erdei, S. Vigneswaran, Long-term operation of submerged membrane bioreactor for the treatment of high strength acrylonitrile-butadienestyrene (ABS) wastewater: effect of hydraulic retention time, Desalination, 191 (2006) 45–51.
  58. S.-R. Chae, Y.-T. Ahn, S.-T. Kang, H.-S. Shin, Mitigated membrane fouling in a vertical submerged membrane bioreactor (VSMBR), J. Membr. Sci., 280 (2006) 572–581.
  59. J. Howell, H. Chua, T. Arnot, In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history, J. Membr. Sci., 242 (2004) 13–19.