1. A.R. García, S.N. Fleite, D. Vazquez Pugliese, A.F. de Iorio, Feedlots and pollution—a growing threat to water resources of agro-production zone in Argentina, Environ. Sci. Technol., 47 (2013) 11932–11933.
  2. A.R. García, R. Maisonnave, M.J. Massobrio, A.R. Fabrizio de Iorio, Field-scale evaluation of water fluxes and manure solution leaching in feedlot pen soils, J. Environ. Qual., 41 (2012) 1591–1599.
  3. A.R. García, A.F. de Iorio, Phosphorus distribution in sediments of morales stream (a tributary of the Matanza-Riachuelo River, Argentina), the influence of organic point source contamination, Hydrobiologia, 492 (2003) 129–138.
  4. B. Eghball, J.E. Gilley, Phosphorus and nitrogen in runoff following beef cattle manure or compost application, J. Environ. Qual., 28 (1999) 1201.
  5. M. Hjorth, K.V. Christensen, M.L. Christensen, S.G. Sommer, Solid–Liquid Separation of Animal Slurry in Theory and Practice, E. Lichtfouse, M. Hamelin, M. Navarrete, P. Debaeke, Eds., Sustainable Agriculture, Volume 2, Springer, Netherlands, 2011, pp. 953–986.
  6. E.A. De Vuyst, S.W. Pryor, G. Lardy, W. Eide, R. Wiederholt, Cattle, ethanol, and biogas: does closing the loop make economic sense?, Agric. Syst., 104 (2011) 609–614.
  7. M.E.C. Caruana, Organizational and economic modeling of an anaerobic digestion system to treat cattle manure and produce electrical energy in Argentina’s feedlot sector, J. Cleaner Prod., 208 (2019) 1613–1621.
  8. G. Tchobanoglous, H. Stensel, R. Tsuchihashi, F. Burton, M. Abu-Orf, G. Bowden, W. Pfrang, Wastewater Engineering: Treatment, Reuse, and Recovery, Metcalf and Eddy Inc., 5th ed., McGraw Hill, USA, 2014.
  9. A. Amirtharajah, C. O’melia, Eds., Coagulation Processes: Destabilization, Mixing, and Flocculation, McGraw-Hill, Inc., USA, 1990.
  10. H. Huang, P. Zhang, Z. Zhang, J. Liu, J. Xiao, F. Gao, Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology, J. Cleaner Prod., 127 (2016) 302–310.
  11. L.E. de-Bashan, Y. Bashan, Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003), Water Res., 38 (2004) 4222–4246.
  12. D.M. Sievers, M.W. Jenner, M. Hanna, Treatment of dilute manure wastewaters by chemical coagulation, Trans. ASABE, 37 (1994) 597–601.
  13. J.J. Sherman, H.H. Van Horn, R.A. Nordstedt, Use of flocculants in dairy wastewaters to remove phosphorus, Appl. Eng. Agric., 16 (2000) 445–452.
  14. R. Laridi, J.-C. Auclair, H. Benmoussa, Laboratory, and pilotscale phosphate and ammonium removal by controlled struvite precipitation following coagulation and flocculation of swine wastewater, Environ. Technol., 26 (2005) 525–536.
  15. A. Thapa, S. Rahman, M.S. Borhan, Remediation of feedlot nutrients runoff by electrocoagulation process, Am. J. Environ. Sci., 11 (2015) 366–379.
  16. E. Butler, R.E. De Otte, C.F.M. Clewett, O. Mulamba, N. Spaar, Y.-T. Hung, Treatment of beef cattle feedlot wastewater by electrocoagulation technology, Desal. Water Treat., 101 (2018) 77–85.
  17. V. Khandegar, S. Acharya, A.K. Jain, Data on treatment of sewage wastewater by electrocoagulation using a punched aluminum electrode and characterization of generated sludge, Data Brief, 18 (2018) 1229–1238.
  18. K. Bensadok, N. El Hanafi, F. Lapicque, Electrochemical treatment of dairy effluent using combined Al and Ti/Pt electrodes system, Desalination, 280 (2011) 244–251.
  19. D. Fitria, M. Scholz, G.M. Swift, Impact of different shapes and types of mixers on sludge dewaterability, Environ. Technol., 34 (2013) 931–936.
  20. A. Demoz, Scaling inline static mixers for flocculation of oil sand mature fine tailings, AIChE J., 61 (2015) 4402–4411.
  21. A. Ghanem, T. Lemenand, D. Della Valle, H. Peerhossaini, Static mixers: mechanisms, applications, and characterization methods–a review, Chem. Eng. Res. Des., 92 (2014) 205–228.
  22. A. Amirtharajah, S.C. Jones, Mixing for Coagulation: Organic Polymers, Static Mixers, and Modeling, H. Hahn, E. Hoffmann, H. Odegaard, Eds., Chemical Water and Wastewater Treatment IV, Springer, Berlin, Heidelberg, 1996, pp. 3–15.
  23. B. Rodger, L. Bridgewater, Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association, Washington, D.C., 2017.
  24. O. Sawalha, M. Scholz, Impact of temperature on sludge dewatering properties assessed by the capillary suction time, Ind. Eng. Chem. Res., 51 (2012) 2782–2788.
  25. B. Gao, B. Liu, T. Chen, Q. Yue, Effect of an aging period on the characteristics and coagulation behavior of polyferric chloride and polyferric chloride–polyamine composite coagulant for synthetic dyeing wastewater treatment, J. Hazard. Mater., 187 (2011) 413–420.
  26. P.T. Spicer, W. Keller, S.E. Pratsinis, The effect of impeller type on floc size and structure during shear-induced flocculation, J. Colloid Interface Sci., 184 (1996) 112–122.
  27. V.A. Mhaisalkar, R. Paramasivam, A.G. Bhole, Optimizing physical parameters of rapid mix design for coagulation– flocculation of turbid waters, Water Res., 25 (1991) 43–52.
  28. D.D. Harris, A Kinetic Study of Aqueous Calcium Carbonate, Master Thesis, Brigham Young University, Provo, USA, 2013.
  29. Y.F. Maa, C. Hsu, Liquid–liquid emulsification by static mixers for use in microencapsulation, J. Microencapsulation, 13 (1996) 419–433.
  30. Y. Lü, S. Zhu, K. Wang, G. Luo, Simulation of the mixing process in a straight tube with sudden changed cross-section, Chin. J. Chem. Eng., 24 (2016) 711–718.
  31. E. Yıldırım, Analysis, and testing of a contraction-and-expansion micromixer for micro-milled microfluidics, Microsyst. Technol., 23 (2017) 4797–4804.
  32. L.K. Wang, Y.T. Hung, K.K. Shammas, Eds., Handbook of Environmental Engineering, Volume 3, Physicochemical Treatment Processes, The Humana Press Inc., Totowa, NJ, 2005.
  33. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment: Principles and Design, John Wiley & Sons, Hoboken, New Jersey, 2012.
  34. (Accessed on March 05, 2019)
  35. L.M. Pepple, D.S. Andersen, R.T. Burns, L.B. Moody, Physical and chemical properties of runoff effluent from beef feedlots in Iowa, Trans. ASABE, 54 (2011) 1079–1084.
  36. J.L. Hatfield, B.A. Stewart, Animal Waste Utilization: Effective Use of Manure as a Soil Resource, CRC Press, Boca Raton, Florida, USA, 1997.
  37. W.A. House, The physico-chemical conditions for the precipitation of phosphate with calcium, Environ. Technol., 20 (1999) 727–733.
  38. X. Cao, W.G. Harris, M.S. Josan, V.D. Nair, Inhibition of calcium phosphate precipitation under environmentally-relevant conditions, Sci. Total Environ., 383 (2007) 205–215.
  39. S. Kataki, H. West, M. Clarke, D.C. Baruah, Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation, and fertilizer potential, Resour. Conserv. Recycl., 107 (2016) 142–156.
  40. I. Çelen, J.R. Buchanan, R.T. Burns, R. Bruce Robinson, D. Raj Raman, Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure, Water Res., 41 (2007) 1689–1696.
  41. K. Fytianos, E. Voudrias, N. Raikos, Modeling of phosphorus removal from aqueous and wastewater samples using ferric iron, Environ. Pollut., 101 (1998) 123–130.