References

  1. P. Boisseau, B. Loubaton, Nanomedicine, nanotechnology in medicine, C. R. Phys., 12 (2011) 620–636.
  2. S.S. Suri, H. Fenniri, B. Singh, Nanotechnology-based drug delivery systems, J. Occup. Med. Toxicol., 2 (2007) 16.
  3. S. Bhattacharya, I. Saha, A. Mukhopadhyay, D. Chattopadhyay, U. Chand, Role of nanotechnology in water treatment and purification: potential applications and implications, Int. J. Chem. Sci. Technol., 3 (2013) 59–64.
  4. M. Rai, A. Ingle, Role of nanotechnology in agriculture with special reference to management of insect pests, Appl. Microbiol. Biotechnol., 94 (2012) 287–293.
  5. T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors, J. Colloid Interface Sci., 363 (2011) 1–24.
  6. T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells, Nanotechnology, 19 (2008) 295203.
  7. S. Raj, S. Jose, U. Sumod, M. Sabitha, Nanotechnology in cosmetics: opportunities and challenges, J. Pharm. Bioallied. Sci., 4 (2012) 186–193.
  8. Y. Wong, C. Yuen, M. Leung, S. Ku, H. Lam, Selected applications of nanotechnology in textiles, Autex Res. J., 6 (2006) 1–8.
  9. S. De Franceschi, L. Kouwenhoven, Nanotechnology: electronics and the single atom, Nature, 417 (2002) 701.
  10. H.-L. Liu, S.A. Dai, K.-Y. Fu, S.-h. Hsu, Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane, Int. J. Nanomed., 5 (2010) 1017–1028.
  11. Y.A. Krutyakov, A.A. Kudrinskiy, A.Y. Olenin, G.V. Lisichkin, Synthesis and properties of silver nanoparticles: advances and prospects, Russ. Chem. Rev., 77 (2008) 233–257.
  12. R. Geethalakshmi, D. Sarada, Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L., Ind. Crop Prod., 51 (2013) 107–115.
  13. I. Aiad, M.M. El-Sukkary, E. Soliman, M.Y. El-Awady, S.M. Shaban, In situ and green synthesis of silver nanoparticles and their biological activity, J. Ind. Eng. Chem., 20 (2014) 3430–3439.
  14. M.M. Stevanović, S.D. Škapin, I. Bračko, M. Milenković, J. Petković, M. Filipič, D.P. Uskoković, Poly (lactide-co-glycolide)/silver nanoparticles: synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential, Polymer, 53 (2012) 2818–2828.
  15. R. Wahab, A. Mishra, S.-I. Yun, Y.-S. Kim, H.-S. Shin, Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route, Appl. Microbiol. Biotechnol., 87 (2010) 1917–1925.
  16. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation, Nanomedicine, 7 (2011) 184–192.
  17. Y.S. Lee, D.W. Kim, Y.H. Lee, J.H. Oh, S. Yoon, M.S. Choi, S.K. Lee, J.W. Kim, K. Lee, C.-W. Song, Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells, Arch. Toxicol., 85 (2011) 1529–1540.
  18. M. Arabi, M. Ghaedi, A. Ostovan, Development of a lower toxic approach based on green synthesis of water-compatible molecularly imprinted nanoparticles for the extraction of hydrochlorothiazide from human urine, ACS Sustainable Chem. Eng., 5 (2017) 3775–3785.
  19. J. Liu, S.Z. Qiao, Q.H. Hu, G.Q. Lu, Magnetic nanocomposites with mesoporous structures: synthesis and applications, Small, 7 (2011) 425–443.
  20. P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J. Nanopart. Res., 10 (2008) 507–517.
  21. A.T. Marshall, R.G. Haverkamp, C.E. Davies, J.G. Parsons, J.L. Gardea-Torresdey, D. van Agterveld, Accumulation of gold nanoparticles in Brassic juncea, Int. J. Phytorem., 9 (2007) 197–206.
  22. J. Kim, Y. Rheem, B. Yoo, Y. Chong, K.N. Bozhilov, D. Kim, M.J. Sadowsky, H.-G. Hur, N.V. Myung, Peptide-mediated shape-and size-tunable synthesis of gold nanostructures, Acta Biomater., 6 (2010) 2681–2689.
  23. P. Malik, R. Shankar, V. Malik, N. Sharma, T.K. Mukherjee, Green chemistry based benign routes for nanoparticle synthesis, J. Nanopart., 2014 (2014) 302429–302443.
  24. A.D. Dwivedi, K. Gopal, Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract, Colloid Surf., A, 369 (2010) 27–33.
  25. A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv., 31 (2013) 346–356.
  26. A.B. Djurišić, Y.H. Leung, A.M.C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis, Mater. Horiz., 1 (2014) 400–410.
  27. A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, B. Buszewski, Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism, Adv. Colloid Interfaces, 249 (2017) 37–52.
  28. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312 (2006) 242–246.
  29. T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano, 2 (2008) 2121–2134.
  30. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloy Compd., 727 (2017) 792–820.
  31. G. Sharma, M. Naushad, D. Pathania, A. Mittal, G. El-Desoky, Modification of Hibiscus cannabinus fiber by graft copolymerization: application for dye removal, Desal. Water Treat., 54 (2015) 3114–3121.
  32. G. Sharma, M. Naushad, H. Aláa, A. Kumar, M.R. Khan, S. Kalia, M. Bala, A. Sharma, Fabrication and characterization of chitosan-crosslinked-poly (alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium, Int. J. Biol. Macromol., 95 (2017) 484–493.
  33. M. Naushad, G. Sharma, Z.A. Alothman, Photodegradation of toxic dye using Gum Arabic-crosslinked-poly (acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel, J. Cleaner Prod., 241 (2019) 118263.
  34. G. Sharma, A. Kumar, M. Naushad, A. García-Peñas, H. Aláa, A.A. Ghfar, V. Sharma, T. Ahamad, F.J. Stadler, Fabrication and characterization of Gum arabic-cl-poly (acrylamide) nanohydrogel for effective adsorption of crystal violet dye, Carbohydr. Polym., 202 (2018) 444–453.
  35. G. Sharma, D. Pathania, M. Naushad, N. Kothiyal, Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water, Chem. Eng. J., 251 (2014) 413–421.
  36. M. Naushad, S. Vasudevan, G. Sharma, A. Kumar, Z. ALOthman, Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-Sloaded amberlite IRA-400 resin, Desal., Water Treat., 57 (2016) 18551–18559.
  37. M. Naushad, T. Ahamad, G. Sharma, H. Aláa, A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J., 300 (2016) 306–316.
  38. G. Sharma, A. Kumar, S. Sharma, M. Naushad, R.P. Dwivedi, Z.A. ALOthman, G.T. Mola, Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review, J. King Saud Univ. Sci., 2 (2019) 257–269.
  39. G. Sharma, A. Kumar, M. Naushad, A. Kumar, H. Aláa, P. Dhiman, A.A. Ghfar, F.J. Stadler, M. Khan, Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites, J. Cleaner Prod., 172 (2018) 2919–2930.
  40. M.T. Islam, A. Dominguez, B. Alvarado-Tenorio, R.A. Bernal, M.O. Montes, J.C. Noveron, Sucrose-mediated fast synthesis of zinc oxide nanoparticles for the photocatalytic degradation of organic pollutants in water, ACS Omega, 4 (2019) 6560–6572.
  41. S. Vijayakumar, B. Vaseeharan, R. Sudhakaran, J. Jeyakandan, P. Ramasamy, A. Sonawane, A. Padhi, P. Velusamy, P. Anbu, C. Faggio, Bioinspired zinc oxide nanoparticles using Lycopersicon esculentum for antimicrobial and anticancer applications, J. Cluster Sci., 30 (2019) 1465–1479.
  42. B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M.A.R. Kalanjiam, K. Murugan, G. Benelli, Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells, Microb. Pathog., 104 (2017) 268–277.
  43. R. Rekha, M. Divya, M. Govindarajan, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, M.N. Al-Anbr, R. Pavela, B. Vaseeharan, Synthesis and characterization of crustin capped titanium dioxide nanoparticles: Photocatalytic, antibacterial, antifungal and insecticidal activities, J. Photochem. Photobiol., B, 199 (2019) 111620.
  44. N. Serpone, A. Emeline, Semiconductor photocatalysis - past, present, and future outlook, J. Phys. Chem. Lett., 3 (2012) 673–677.
  45. L. Han, S. Xue, S. Zhao, J. Yan, L. Qian, M. Chen, Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions, PLoS One, 10 (2015) e0132067.
  46. J. Fan, Y. Guo, J. Wang, M. Fan, Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles, J. Hazard. Mater., 166 (2009) 904–910.
  47. A. Gnanaprakasam, V. Sivakumar, P. Sivayogavalli, M. Thirumarimurugan, Characterization of TiO2 and ZnO nanoparticles and their applications in photocatalytic degradation of azodyes, Ecotoxicol. Environ. Saf., 121 (2015) 121–125.
  48. S. Malhotra, Ajowan, Handbook of Herbs and Spices, Elsevier, Woodhead Publishing, 2012, pp. 118–137.
  49. M. Sathishkumar, K. Sneha, Y.-S. Yun, Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity, Bioresour. Technol., 101 (2010) 7958–7965.
  50. T.Z. Sarmanovna, Phytochemical study of odorous celery root (Apium graveolens L.) grown in the north Caucasus, Pharmacogn. J., 11 (2019) 527–530.
  51. T. Mencherini, A. Cau, G. Bianco, R.D. Loggia, R. Aquino, G. Autore, An extract of Apium graveolens var. dulce leaves: structure of the major constituent, apiin, its anti-inflammatory properties, J. Pharm. Pharmacol., 59 (2007) 891–897.
  52. M. Ovais, A.T. Khalil, A. Raza, M.A. Khan, I. Ahmad, N.U. Islam, M. Saravanan, M.F. Ubaid, M. Ali, Z.K. Shinwari, Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics, Nanomedicine, 12 (2016) 3157–3177.
  53. M. Wang, Y. Zhou, Y. Zhang, S.H. Hahn, E.J. Kim, From Zn(OH)2 to ZnO: a study on the mechanism of phase transformation, Cryst. Eng. Comm., 13 (2011) 6024–6026.
  54. B. Sameh, B. Ibtissem, A. Mahmoud, K. Boukef, N.A. Boughattas, Antioxidant activity of Apium graveolens extracts, J. Biol. Active Prod. Nat., 1 (2011) 340–343.
  55. G. Liu, L. Zhuang, D. Song, C. Lu, X. Xu, Isolation, purification, identification of the main phenolic compounds from leaves of celery (Apium graveolens L. var. dulce Mill./Pers.). J. Sep. Sci., 40 (2017) 472–479.
  56. V. Makarov, A. Love, O. Sinitsyna, S. Makarova, I. Yaminsky, M. Taliansky, N. Kalinina, “Green” nanotechnologies: synthesis of metal nanoparticles using plants, Acta Nat., 6 (2014) 35–44.
  57. S. Faizi, H. Siddiqi, A. Naz, S. Bano, Specific deuteration in patuletin and related flavonoids via keto–enol tautomerism: solvent‐and temperature‐dependent 1H‐NMR studies, Helv. Chim. Acta, 93 (2010) 466–481.
  58. T. Rasheed, F. Nabeel, M. Bilal, H.M. Iqbal, Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes, Biocatal. Agric. Biotechnol., 19 (2019) 101154.
  59. T. Khalafi, F. Buazar, K. Ghanemi, Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants, Sci. Rep., 9 (2019) 6866.
  60. G. Sharmila, C. Muthukumaran, K. Sandiya, S. Santhiya, R.S. Pradeep, N.M. Kumar, N. Suriyanarayanan, M. Thirumarimurugan, Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract, J. Nanostruct. Chem., 8 (2018) 293–299.
  61. R. Isaac, G. Sakthivel, C. Murthy, Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract, J. Nanotechnol., 2013 (2013) 906592–906598.
  62. R. Sathyavathi, M.B. Krishna, S.V. Rao, R. Saritha, D.N. Rao, Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics, Adv. Sci. Lett., 3 (2010) 138–143.
  63. K. Niraimathi, V. Sudha, R. Lavanya, P. Brindha, Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities, Colloids Surf., B, 102 (2013) 288–291.
  64. S. Pai, H. Sridevi, T. Varadavenkatesan, R. Vinayagam, R. Selvaraj, Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization, Optik, 185 (2019) 248–255.
  65. T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam, R. Selvaraj, Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora, J. Photochem. Photobiol., B, 199 (2019) 111621.
  66. L. Qin, C. Shing, S. Sawyer, P.S. Dutta, Enhanced ultraviolet sensitivity of zinc oxide nanoparticle photoconductors by surface passivation, Opt. Mater., 33 (2011) 359–362.
  67. U. Koch, A. Fojtik, H. Weller, A. Henglein, Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects, Chem. Phys. Lett., 122 (1985) 507–510.
  68. M.M. Khan, N.H. Saadah, M.E. Khan, M.H. Harunsani, A.L. Tan, M.H. Cho, Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles, Mater. Sci. Semicond. Process., 91 (2019) 194–200.
  69. N. Pantidos, L.E. Horsfall, Biological synthesis of metallic nanoparticles by bacteria, fungi and plants, J. Nanomed. Nanotechnol., 5 (2014) 233–243.
  70. J. Jiang, G. Oberdörster, A. Elder, R. Gelein, P. Mercer, P. Biswas, Does nanoparticle activity depend upon size and crystal phase?, Nanotoxicology, 2 (2008) 33–42.
  71. J.A. Rodriguez, X. Wang, J.C. Hanson, G. Liu, A. Iglesias-Juez, M. Fernández-Garćía, The behavior of mixed-metal oxides: structural and electronic properties of Ce1–xCaxO2 and Ce1−xCaxO2−x, J. Chem. Phys., 119 (2003) 5659–5669.
  72. D. Singh, J. Singh, P. Mishra, R. Tiwari, O. Srivastava, Synthesis, characterization and application of semiconducting oxide (Cu2O and ZnO) nanostructures, Bull. Mater. Sci., 31 (2008) 319–325.
  73. A. Balcha, O.P. Yadav, T. Dey, Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods, Environ. Sci. Pollut. Res., 23 (2016) 25485–25493.
  74. R. Yuvakkumar, J. Suresh, B. Saravanakumar, A.J. Nathanael, S.I. Hong, V. Rajendran, Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications, Spectrochim. Acta, Part A, 137 (2015) 250–258.
  75. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications, Mater. Sci. Semicond. Process., 32 (2015) 55–61.
  76. D. Hu, W. Si, W. Qin, J. Jiao, X. Li, X. Gu, Y. Hao, Cucurbita pepo leaf extract induced synthesis of zinc oxide nanoparticles, characterization for the treatment of femoral fracture, J. Photochem. Photobiol., B, 195 (2019) 12–16.
  77. M. Ganesh, S.G. Lee, J. Jayaprakash, M. Mohankumar, H.T. Jang, Hydnocarpus alpina Wt extract mediated green synthesis of ZnO nanoparticle and screening of its anti-microbial, free radical scavenging, and photocatalytic activity, Biocatal. Agric. Biotechnol., 19 (2019) 101129.
  78. R. Vijayalakshmi, V. Rajendran, Synthesis and characterization of nano-TiO2 via different methods, Arch. Appl. Sci. Res., 4 (2012) 1183–1190.
  79. S. Sonia, K. Ruckmani, M. Sivakumar, Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: a potent nanocosmeceutical application, Mater. Sci. Eng., C, 79 (2017) 581–589.
  80. S.T. Fardood, A. Ramazani, S. Moradi, P.A. Asiabi, Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light, J. Mater. Sci. - Mater. Electron., 28 (2017) 13596–13601.
  81. H. Agarwal, S.V. Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles–an eco-friendly approach, Resour.-Effic. Technol., 3 (2017) 406–413.
  82. C. Vidya, S. Hiremath, M. Chandraprabha, M.L. Antonyraj, I.V. Gopal, A. Jain, K. Bansal, Green synthesis of ZnO nanoparticles by Calotropis gigantea, Int. J. Curr. Eng. Technol., 1 (2013) 118–120.
  83. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles, Int. Nano Lett., 3 (2013) 30.
  84. Y.J. Shim, V. Soshnikova, G. Anandapadmanaban, R. Mathiyalagan, Z.E.J. Perez, J. Markus, Y.J. Kim, V. Castro-Aceituno, D.C. Yang, Zinc oxide nanoparticles synthesized by Suaeda japonica Makino and their photocatalytic degradation of methylene blue, Optik, 182 (2019) 1015–1020.
  85. A. Jiang, N. Awasthi, A.N. Kolmogorov, W. Setyawan, A. Börjesson, K. Bolton, A.R. Harutyunyan, S. Curtarolo, Theoretical study of the thermal behavior of free and aluminasupported Fe-C nanoparticles, Phys. Rev. B: Condens. Matter, 75 (2007) 205426.
  86. D. Fernandes, R. Silva, A.W. Hechenleitner, E. Radovanovic, M.C. Melo, E.G. Pineda, Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide, Mater. Chem. Phys., 115 (2009) 110–115.
  87. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide-from synthesis to application: a review, Materials, 7 (2014) 2833–2881.
  88. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res., 88 (2016) 428–448.
  89. K. Parida, S. Dash, D. Das, Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods, J. Colloid Interface Sci., 298 (2006) 787–793.
  90. A. Dodd, A. McKinley, M. Saunders, T. Tsuzuki, Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide, J. Nanopart. Res., 8 (2006) 43–51.
  91. G. Sharma, V.K. Gupta, S. Agarwal, S. Bhogal, M. Naushad, A. Kumar, F.J. Stadler, Fabrication and characterization of trimetallic nano-photocatalyst for remediation of ampicillin antibiotic, J. Mol. Liq., 260 (2018) 342–350.
  92. J.M. Coronado, F. Fresno, M.D. Hernández-Alonso, R. Portela, Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, Springer, London, 2013, pp. 123–156.
  93. Y. Zhang, F. Zhu, J. Zhang, L. Xia, Converting layered zinc acetate nanobelts to one-dimensional structured ZnO nanoparticle aggregates and their photocatalytic activity, Nanoscale Res. Lett., 3 (2008) 201–204.
  94. D. Chatterjee, V.R. Patnam, A. Sikdar, P. Joshi, R. Misra, N.N. Rao, Kinetics of the decoloration of reactive dyes over visible light-irradiated TiO2 semiconductor photocatalyst, J. Hazard. Mater., 156 (2008) 435–441.
  95. M. Guo, M. Fung, F. Fang, X. Chen, A. Ng, A. Djurišić, W. Chan, ZnO and TiO2 1D nanostructures for photocatalytic applications, J. Alloys Compd., 509 (2011) 1328–1332.