1. B. Antizar-Ladislao, N.I. Galil, Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer, Water Res., 38 (2004) 267–276.
  2. C. Su, R.W. Puls, Kinetics of trichloroethenereduction by zerovalent iron andtin: pretreatment effect, apparentactivation energy, and intermediateproducts, Environ. Sci. Technol., 33 (1999) 163–168.
  3. C.M. Hurdzan, R.P. Lanno, Determining exposure dose in soil: the effect of modifying factors on chlorinated benzene toxicity to earthworms, Chemosphere, 76 (2009) 946–951.
  4. Y. Wang, Y.P. Chen, Y.Z. Zhang, Investigation on the interaction of 2,4-dichlorophenol with human serum albumin, Chem. Bioeng., 28 (2011) 28–33.
  5. S. Asim, Y. Zhu, A. Batool, R. Hailili, J. Luo, Y. Wang, C. Wang, Electrochemical treatment of 2,4–dichlorophenol using a nanostructured 3D–porous Ti/Sb–SnO2–Gr anode: reaction kinetics, mechanism, and continuous operation, Chemosphere, 185 (2017) 11–19.
  6. E. Sinirtas, M. Isleyen, G.S.P. Soylu, Photocatalytic degradation of 2,4-dichlorophenol with V2O5-TiO2 catalysts: effect of catalyst support and surfactant additives, Chin. J. Catal., 37 (2016) 607–615.
  7. J. Wei, X. Xu, Y. Liu, D. Wang, Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters, Water Res., 40 (2006) 348–354.
  8. A.S. Ghatbandhe, M.K. Yenkie, 2,4 dichlorophenol (2,4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption, J. Environ. Sci. Eng., 50 (2008) 163–168.
  9. A. Hass, J.M. Gonzalez, I.M. Lima, H.W. Godwin, J.J. Halvorson, D.G. Boyer, Chicken manure biochar as liming and nutrient source for acid Appalachian soil, J. Environ. Qual., 41 (2012) 1096–1106.
  10. Z. Wang, H. Guo, F. Shen, G. Yang, Y. Zhang, Y. Zeng, L. Wang, H. Xiao, S. Deng, Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4 +), nitrate (NO3 –), and phosphate (PO4 3–), Chemosphere, 119 (2015) 646–653.
  11. M.K. Hossain, V. Strezov, K.Y. Chan, A. Ziolkowski, P.F. Nelson, Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar, J. Environ. Manage., 92 (2011) 223–228.
  12. K.G. Roberts, B.A. Gloy, S. Joseph, N.R. Scott, J. Lehmann, Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential, Environ. Sci. Technol., 44 (2010) 827–833.
  13. M.J. Antal, M. Grønli, The art, science, and technology of charcoal production, Ind. Eng. Chem. Res., 42 (2003) 1619–1640.
  14. S. Zhang, H. Gao, J. Li, Y. Huang, A. Alsaedi, T. Hayat, X. Xu, X. Wang, Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis, J. Hazard. Mater, 321 (2017) 92–102.
  15. X. Liu, J. Li, X. Wang, C. Chen, X. Wang, High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution, J. Nucl. Mater., 466 (2015) 56–64.
  16. X. Liu, J. Wu, S.W. Zhang, C.C. Ding, G.D. Sheng, A. Alsaedi, T. Hayat, J.X. Li, Y.T. Song, Amidoxime-functionalized hollow carbon spheres for efficient removal of uranium from wastewater, ACS Sustainable Chem. Eng., 7 (2019) 10800–10807.
  17. G. Li, W. Zhu, L. Zhu, X. Chai, Effect of pyrolytic temperature on the adsorptive removal of P-benzoquinone, Korean J. Chem. Eng., 33 (2016) 2215–2221.
  18. Z. Qiying, J. Xia, L. Xi, J.C. Qiang, J. Wenju, Preparation of highyield N-doped biochar from nitrogen-containing phosphate and its effective adsorption for toluene, RSC Adv., 8 (2018) 30171–30179.
  19. H. Xu, X. Zhang, Y. Zhang, Modification of biochar by Fe2O3 for the removal of pyridine and quinoline, Environ. Technol., 39 (2018) 1470–1480.
  20. J. Sun, X. Liu, F. Zhang, J. Zhou, J. Wu, A. Alsaedi, T. Hayat, J. Li, Insight into the mechanism of adsorption of phenol and resorcinol on activated carbons with different oxidation degrees, Colloids Surf., A, 563 (2019) 22–30.
  21. S.Y. Oh, Y.D. Seo, K.S. Ryu, D.J. Park, S.H. Lee, Redox and catalytic properties of biochar-coated zero-valent iron for the removal of nitro explosives and halogenated phenols, Environ. Sci. Processes Impacts, 19 (2017) 711–719.
  22. M. Rinaudo, Chitin and chitosan: properties and applications, Prog. Polym. Sci., 31 (2006) 603–632.
  23. S. Sugashini, K.M.M.S. Begum, Performance of ozone treated rice husk carbon (OTRHC) for continuous adsorption of Cr(VI) ions from synthetic effluent, J. Environ. Chem. Eng., 1 (2013) 79–85.
  24. T. Pal, T. Kar, Single crystal growth and characterization of the nonlinearoptical crystal L-arginine hydrofluoride, J. Cryst. Growth, 234 (2002) 267–271.
  25. J. Wu, D. Ren, X. Zhanga, Z. Chen, S. Zhang, S. Li, L. Fu, The adsorption properties of biochar derived from woody plants or bamboo for cadmium in aqueous solution, Desal. Water Treat., 160 (2019) 268–275.
  26. R.G. Tobin, S. Chiang, P.A. Thiel, P.L. Richards, The C=O stretching vibration of CO on Ni(100) by infrared emission spectroscopy, Surf. Sci., 140 (1984) 393–399.
  27. L. Feng, X.P. Ge, D.S. Wang, H.X. Tang, Effects of pH value on the adsorption and degradation of 2,4-DCP by nanoscale zerovalent iron, Environ. Sci., 33 (2012) 94–103.
  28. K.M. Ponvel, D. Kavitha, K.-M. Kim, C.-H. Lee, Adsorption of 2,4-dichlorophenol on metal-nitrate modified activated carbon, Korean J. Chem. Eng., 26 (2009) 1379–1382.
  29. Q. Luo, X. Zhang, H. Wang, Y. Qian, Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics, Chemosphere, 59 (2005) 1289–1298.
  30. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Franklin Inst., 183 (1917).
  31. K.G. Bhattacharyya, S.S. Gupta, Removal of Cu(II) by natural and acid-activated clays: an insight of adsorption isotherm, kinetic and thermodynamics, Desalination, 272 (2011) 66–75.
  32. S. Gupta, B.V. Babu, Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: equilibrium, kinetics and regeneration studies, Chem. Eng. J., 150 (2009) 352–365.
  33. C.W. Cheung, J.F. Porter, G. Mckay, Sorption kinetics for the removal of copper and zinc from effluents using bone char, Sep. Purif. Technol., 19 (2000) 55–64.
  34. M.S. El-Shahawi, H.A. Nassif, Retention and thermodynamic characteristics of mercury(II) complexes onto polyurethane foams, Anal. Chim. Acta, 481 (2003) 29–39.
  35. J. Lützenkirchen, Ionic strength effects on cation sorption to oxides: macroscopic observations and their significance in microscopic interpretation, J. Colloid Interface Sci., 195 (1997) 149–155.
  36. Z. Wu, J. Wu, H. Xiang, M.-S. Chun, K. Lee, Organosilanefunctionalized Fe3O4 composite particles as effective magnetic assisted adsorbents, Colloids Surf., A, 279 (2006) 167–174.
  37. L. You, Z. Wu, T. Kim, K. Lee, Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane, J. Colloid Interface Sci., 300 (2006) 526–535.
  38. X. Ye, T. Liu, Q. Li, H. Liu, Z. Wu, Comparison of strontium and calcium adsorption onto composite magnetic particles derived from Fe3O4 and bis(trimethoxysilylpropyl)amine, Colloids Surf., A, 330 (2008) 21–27.
  39. P.K. Grover, R.L. Ryall, Critical appraisal of salting-out and its implications for chemical and biological sciences, Chem. Rev., 105 (2005) 1–10.
  40. J.P. Chen, S. Wu, Simultaneous adsorption of copper ions and humic acid onto an activated carbon, J. Colloid Interface Sci., 280 (2004) 334–342.