1. Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux, H. Hamad, Removal of methylene blue by mesoporous CMK-3: Kinetics, isotherms and thermodynamics, J. Mol. Liq., 223 (2016) 763–770.
  2. L. Zhao, S.-T. Yang, S. Feng, Q. Ma, X. Peng, D. Wu, Preparation and application of carboxylated graphene oxide sponge in dye removal, Int. J. Environ. Res. Public Health, 14 (2017) 1301–1313.
  3. S. Hosseini, M.A. Khan, M.R. Malekbala, W. Cheah, T.S.Y. Choong, Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: adsorption and desorption studies, Chem. Eng. J., 171 (2011) 1124–1131.
  4. S. Aber, N. Daneshvar, S.M. Soroureddin, A. Chabok, K. Asadpour-Zeynali, Study of acid orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network, Desalination, 211 (2007) 87–95.
  5. A. Rodríguez, J. García, G. Ovejero, M. Mestanza, Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics, J. Hazard. Mater., 172 (2009) 1311–1320.
  6. G. Zhang, J. Qu, H. Liu, A.T. Cooper, R. Wu, CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration, Chemosphere, 68 (2007) 1058–1066.
  7. J. Ma, D. Huang, J. Zou, L. Li, Y. Kong, S. Komarneni, Adsorption of methylene blue and Orange II pollutants on activated carbon prepared from banana peel, J. Porous Mater., 22 (2015) 301–311.
  8. S. Akazdam, M. Chafi, W. Yassine, B. Gourich, Removal of Acid Orange 7 dye from aqueous solution using the exchange resin amberlite FPA-98 as an efficient adsorbent: kinetics, isotherms, and thermodynamics study, J. Mater. Environ. Sci., 8 (2017) 2993–3012.
  9. K.-W. Jung, B.H. Choi, M.-J. Hwang, T.-U. Jeong, K.-H. Ahn, Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue, Bioresour. Technol., 219 (2016) 185–195.
  10. M. Czubaszek, J. Choma, Kinetic studies of selected dye adsorption from aqueous solutions on nanoporous carbons obtained from polymeric precursors, Ochr. Sr., 38 (2016) 3–12 (in Polish).
  11. S. Chen, M. Zhou, H.-F. Wang, T. Wang, X.-S. Wang, H.-B. Hou, B.-Y. Song, Adsorption of reactive brilliant red X-3B in aqueous solutions on clay–biochar composites from bagasse and natural attapulgite, Water, 10 (2018) 703–718.
  12. X. Jin, M. Jiang, X. Shan, Z. Pei, Z. Chena, Adsorption of methylene blue and orange II onto unmodified and surfactantmodified zeolite, J. Colloid Interface Sci., 328 (2008) 243–247.
  13. L. Yu, Y. Luo, The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon, J. Environ. Chem. Eng., 2 (2014) 220–229.
  14. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies, J. Colloid Interface Sci., 362 (2011) 457–462.
  15. R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered mesoporous carbons, Adv. Mater., 13 (2001) 677–781.
  16. A.H. Lu, W. Schmidt, B. Spliethoff, F. Schüth, Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume, Adv. Mater., 15 (2003) 1602–1606.
  17. J. Choma, Micro-mesoporous carbons: synthesis, properties, application, Inż. Ochr. Sr., 16 (2013) 163–178 (in Polish).
  18. R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B, 103 (1999) 7743–7746.
  19. J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials, Adv. Mater., 18 (2006) 2073–2094.
  20. T. Kyotani, Control of porous structure in carbon, Carbon, 38 (2000) 269–286.
  21. S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Oshuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure, J. Am. Chem. Soc., 122 (2000) 10712–10713.
  22. S. Inagaki, K. Oikawa, Y. Kubota, Effect of carbon source on the textural and electrochemical properties of novel cage-type mesoporous carbon as a replica of KIT-5 mesoporous silica, Chem. Lett., 38 (2009) 918–919.
  23. C. Liang, K. Hong, G.A. Guiochon, J.W. Mays, S. Dai, Synthesis of a large-scale highly ordered porous carbon film by selfassembly of block copolymers, Angew. Chem. Int. Ed., 3 (2004) 5785–5789.
  24. S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite, Chem. Commun., 16 (2005) 2125–2127.
  25. F. Zhang, Y. Meng, D. Gu, Y. Yan, C. Yu, B. Tu, D. Zhao, A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure, J. Am. Chem. Soc., 127 (2005) 13508–13509.
  26. J. Górka, A. Zawiślak, J. Choma, M. Jaroniec, KOH activation of mesoporous carbons obtained by soft-templating, Carbon, 46 (2008) 1159–1161.
  27. J. Jin, N. Nishiyama, Y. Egashira, K. Ueyama, Pore structure and pore size controls of ordered mesoporous carbons prepared from resorcinol/formaldehyde/triblock polymers, Microporous Mesoporous Mater., 118 (2009) 218–223.
  28. J. Choma, K. Jedynak, D. Jamioła, M. Jaroniec, Influence of carbonization temperature on the adsorption and structural properties of mesoporous carbons obtained by soft templating, Ochr. Sr., 34 (2012) 3–8 (in Polish).
  29. J. Choma, K. Jedynak, W. Fahrenholz, J. Ludwinowicz, M. Jaroniec, Development of microporosity in mesoporous carbons, Ochr. Sr., 35 (2013) 3–10 (in Polish).
  30. X. Wang, C.D. Liang, S. Dai, Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol−formaldehyde and block copolymers under highly acidic conditions, Langmiur, 24 (2008) 7500–7505.
  31. J. Choma, A. Kalinowska, K. Jedynak, M. Jaroniec, Reproducibility of the synthesis and adsorption properties of ordered mesoporous carbons obtained by the soft-templating method, Ochr. Sr., 34 (2012) 1–8 (in Polish).
  32. N.P. Wickramaratne, M. Jaroniec, Activated carbon spheres for CO2 adsorption, ACS Appl. Mater. Interfaces, 5 (2013) 1849–1855.
  33. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  34. S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity, 2nd ed., Academic Press, London, 1982.
  35. J. Jagiello, J.P. Olivier, 2D-NLDFT Adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation, Carbon, 55 (2013) 70–80.
  36. J. Jagiello, J.P. Olivier, Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation, Adsorption, 19 (2013) 777–783.
  37. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32 (1994) 759–769.
  38. H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon, 40 (2002) 145–149.
  39. C.K. Lim, H.H. Bay, C.H. Noeh, A. Aris, Z.A. Majid, Z. Ibrahim, Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm. kinetic and thermodynamic studies, Environ. Sci. Pollut. Res., 20 (2013) 7243–7255.
  40. J. Rivera-Utrilla, I. Bautista-Toledo, M.A. Ferro-García, C. Moreno-Castilla, Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption, J. Chem. Technol. Biotechnol., 76 (2001) 1209–1215.
  41. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  42. J. Choma, Characterization of nanoporous active carbons by using gas adsorption isotherms, Wegiel aktywny w ochronie srodowiska i przemysle, 2006, pp. 9–19 (in Polish).
  43. K. Jedynak, D. Wideł, N. Rędzia, Removal of Rhodamine B (a basic dye) and Acid Yellow 17 (an acidic dye) from aqueous solutions by ordered mesoporous carbon and commercial activated carbon, Colloids Interfaces, 3, (2019) 30–46.
  44. Y.S., Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes Pigm., 77 (2008) 16–23.
  45. C. Yin, C. Xu, W. Yu, Y. Jia, W. Sun, G. Zhou, M. Xian, Synthesis of a novel isatin and ethylenediamine modified resin and effective adsorption behavior towards Orange G, RSC Adv., 9 (2019) 801–809.
  46. L. Abramian, H. El-Rassy, Adsorption kinetics and thermodynamics of azo-dye Orange II onto highlyporous titania aerogel, Chem. Eng. J., 150 (2009) 403–410.
  47. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungl. Sven. Veten. Akad. Handl., 24 (1898) 1–39.
  48. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  49. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–59.
  50. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  51. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  52. J. Choma, M. Czubaszek, M. Jaroniec, Adsorption of dyes from aqueous solutions on active carbons, Ochr. Sr., 37 (2015) 3–14 (in Polish).
  53. M.M. Dubinin, L.V. Radushkevich, The equation of the characteristic curve of activated charcoal, Proc. Acad. Sci. USSR, 55 (1947) 331–337.
  54. M.M. Dubinin, The potential theory of adsorption of gasses and vapors for adsorbents with energetically nonuniform surfaces, Chem. Rev., 60 (1960) 235–266.
  55. S.M., Hasany, M.H., Chaudhary, Sorption potential of Hare River sand for the removal of antimony from acidic aqueous solution, Appl. Radiat. Isot., 47 (1996) 467–471.
  56. K. Kurdziel, M. Raczyńska-Żak, L. Dąbek, Equilibrium and kinetic studies on the process of removing chromium(VI) from solutions using HDTMA-modified halloysite, Desal. Water Treat., 137 (2019) 88–100.
  57. H. Nourmoradi, A.R. Ghiasvand, Z. Noorimotlagh, Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (ZnO) nanoparticles: equilibrium, kinetic, and thermodynamic study, Desal. Water Treat., 55 (2015) 252–262.
  58. J. Pedro Silva, S. Sousa, J. Rodrigues, H. Antunes, J.J. Porter, I. Gonçalves, S. Ferreira-Dias, Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains, Separ. Purif. Technol., 40 (2004) 309–315.
  59. B. Sarkar, Y. Xi, M. Megharaj, R. Naidu, Orange II adsorption on palygorskites modified with alkyl trimethylammonium and dialkyl dimethylammonium bromide - An isothermal and kinetic study, Appl. Clay Sci., 51 (2011) 370–374.
  60. M. Czubaszek, J. Choma, Adsorption of dyes from aqueous solutions on nanoporous carbon materials obtained from polymeric precursors, Ochr. Sr., 39 (2017) 3–10 (in Polish).
  61. X. Quan, X. Liu, L. Bo, S. Chen, Y. Zhao, X. Cui, Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation, Water Res., 38 (2004) 4484–4490.
  62. L. Kong, M. Su, Y. Peng, L. Hou, J. Liu, H. Li, Z. Diao, K. Shih, Y. Xiong, D.Chen, Producing sawdust derived activated carbon by co-calcinations with limestone for enhanced Acid Orange II adsorption, J. Cleaner Prod., 168 (2017) 22–29.