1. A.F.C. Leonard, L. Zhang, A.J. Balfour, R. Garside, W.H. Gaze, Human recreational exposure to antibiotic-resistant bacteria in coastal bathing waters, Environ. Int., 82 (2015) 92–100.
  2. S.A. Thompson, E.V. Maani, A.H. Lindell, C.J. King, J.V. McArthur, Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens, Appl. Environ. Microbiol., 73 (2007) 2199–2206.
  3. N. Devarajan, A. Laffite, N.D. Graham, M. Meijer, K. Prabakar, J.I. Mubedi, V. Elongo, P.T. Mpiana, B.W. Ibelings, W. Wildi, J. Pote, Accumulation of clinically relevant antibiotic resistance genes, bacterial load, and metals in freshwater lake sediments in central Europe, Environ. Sci. Technol., 49 (2015) 6528–6537.
  4. S. Kim, H. Park, K. Chandran, Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline-resistant bacteria: a mathematical modeling approach, Chemosphere, 78 (2010) 1071–1077.
  5. J.L. Martinez, Environmental pollution by antibiotics and by antibiotic resistance determinants, Environ. Pollut., 157 (2009) 2893–2902.
  6. V.K. Sharma, N. Johnson, L. Cizmas, T.J. McDonald, H. Kim, A review of the influence of treatment strategies on antibioticresistant bacteria and antibiotic resistance genes, Chemosphere, 150 (2016) 702–714.
  7. N. Li, G.P. Sheng, Y.Z. Lu, R.J. Zeng, H.Q. Yu, Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation, Water Res., 111 (2017) 204–212.
  8. O. Gibert, B. Lefevre, O. Ferrer, G. Prats, X. Bernat, M. Paraira, Composition and reversibility of fouling on low-pressure membranes in the filtration of coagulated water: insights into organic fractions behavior, Desal. Water Treat., 57 (2016) 26313–26326.
  9. P. Gao, M. Munir, I. Xagoraraki, Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant, Sci. Total Environ., 421 (2012) 173–183.
  10. L. Rizzo, C. Manaia, C. Merlin, T. Schwartz, C. Dagot, M.C. Ploy, I. Michael, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for antibiotic-resistant bacteria and genes spread into the environment: a review, Sci. Total Environ., 447 (2013) 345–360.
  11. P. Cai, Q. Huang, W. Chen, D. Zhang, K. Wang, D. Jiang, W. Liang, Soil colloids-bound plasmid DNA: effect on the transformation of E. coli and resistance to DNase I degradation, Soil Biol. Biochem., 39 (2007) 1007–1013.
  12. R.M. Wu, D.J. Lee, T.D. Waite, J. Guan, Multilevel structure of sludge flocs, J. Colloid Interface Sci., 252 (2002) 383–392.
  13. S. Biggs, M. Habgood, G.J. Jameson, Y. Yan, Aggregate structures formed via a bridging flocculation mechanism, Chem. Eng. J., 80 (2000) 13–22.
  14. R.K. Chakraborti, K.H. Gardner, J.F. Atkinson, J.E. Van Benschoten, Changes in fractal dimension during aggregation, Water Res., 37 (2003) 873–883.
  15. E.A. Auerbach, E.E. Seyfried, K.D. McMahon, Tetracycline resistance genes in activated sludge wastewater treatment plants, Water Res., 41 (2007) 1143–1151.
  16. R. Duan, Distribution and Enhanced Removal of Antibiotic Resistance Genes in Wastewater Treatment Plants in Harbin, Thesis, Harbin Institute of Technology, Harbin, 2014.
  17. M.V.R. Breazeal, J.T. Novak, P.J. Vikesland, A. Pruden, Effect of wastewater colloids on membrane removal of antibiotic resistance genes, Water Res., 47 (2013) 130–140.
  18. P. Cai, Q.Y. Huang, X.W. Zhang, Interactions of DNA with clay minerals and soil colloidal articles and protection against degradation by DNase, Environ. Sci. Technol., 40 (2006) 2971–2976.
  19. T.H. Nguyen, K.L. Chen, M. Elimelech, Adsorption kinetics and reversibility of linear plasmid DNA on silica surfaces: Influence of alkaline earth and transition metal ions, Biomacromolecules, 11 (2010) 1225–1230.
  20. M.G. Lorenz, W. Wackernagel, Adsorption of DNA to sand and variable degradation of adsorbed DNA, Appl. Environ. Microbiol., 53 (1988) 2948–2952.
  21. J. Peter, J. Bruce, D. David, A.P. Simon, Treatment options and their effect on NOM—coagulant floc structures, J. Am. Water Works Assn., 100 (2008) 64–73.
  22. T. Li, Z. Zhu, D. Wang, C. Yao, H. Tang, Characterization of floc size, strength and structure under various coagulation mechanisms, Powder Technol., 168 (2006) 104–110.
  23. Z.P. Zhu, The process analyzing and the optimum pH predicting of the coagulation of aluminum (and ferric) salts, Technol. Water Treat., 2 (1993) 51–58.
  24. H. Xu, W. Jiang, F. Xiao, D.S. Wang, The characteristics of flocs and zeta potential in nano-TiO2 system under different coagulation conditions, Colloids Surf., A, 452 (2014) 181–188.
  25. S.X. Duan, H. Xu, F. Xiao, D.S. Wang, C.Q. Ye, R.Y. Jiao, Y.J. Liu, Effects of Al species on coagulation efficiency, residual Al and floc properties in surface water treatment, Colloids Surf., A, 459 (2014) 14–21.