**References**

- P.V. Ayar, M. Vrac, S. Bastin, J. Carreau, M. Déqué, C. Gallardo, Intercomparison of statistical and dynamical downscaling models under the EURO-and MED-CORDEX initiative framework: present climate evaluations, Clim. Dyn., 46 (2016) 1301–1329.
- C. Li, L. Zhu, Z. He, H. Gao, Y. Yang, D. Yao, X. Qu, Runoff prediction method based on adaptive elman neural network, Water, 11 (2019) 1113.
- D.J. Jeon, Y. Pachepsky, B. Kim, J.H. Kim, New methodology to develop high-resolution rainfall data using weather radar for watershed-scale water quality model, Desal. Water Treat., 138 (2019) 248–256.
- J. Hunink, G. Simons, S. Suárez-Almiñana, A. Solera, J. Andreu, M. Giuliani, P. Zamberletti, M. Grillakis, A. Koutroulis, I. Tsanis, A simplified water accounting procedure to assess climate change impact on water resources for agriculture across different European river basins, Water, 11 (2019) 1976.
- S. Madadgar, A. AghaKouchak, S. Shukla, A.W. Wood, L. Cheng, K.L. Hsu, M. Svoboda, A hybrid statistical‐dynamical framework for meteorological drought prediction: application to the southwestern United States, Water Resour. Res., 52 (2016) 5095–5110.
- H. Shastri, S. Ghosh, S. Karmakar, Improving global forecast system of extreme precipitation events with regional statistical model: application of quantile‐based probabilistic forecasts, J. Geophys. Res.: Atmos., 122 (2017) 1617–1634.
- Z.E. Asong, M.N. Khaliq, H.S. Wheater, Projected changes in precipitation and temperature over the Canadian Prairie Provinces using the generalized linear model statistical downscaling approach, J. Hydrol., 539 (2016) 429–446.
- M.H. Khan, N.S. Muhammad, A. El-Shafie, Wavelet-ANN vs. ANN-based model for hydrometeorological drought forecasting, Water, 10 (2018) 998.
- W.-C. Wang, K.-W. Chau, D.-M. Xu, X.-Y. Chen, Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition, Water Resour. Manage., 29 (2015) 2655–2675.
- M.C. Valverde, E. Araujo, H.C. Velho, Neural network and fuzzy logic statistical downscaling of atmospheric circulationtype specific weather pattern for rainfall forecasting, Appl. Soft Comput., 22 (2014) 681–694.
- D.R. Nayak, A. Mahapatra, P. Mishra, A survey on rainfall prediction using artificial neural network, Int. J. Comput. Appl., 72 (2013) 32–40.
- O. Kisi, M. Cimen, Precipitation forecasting by using waveletsupport vector machine conjunction model, Eng. Appl. Artif. Intell., 25 (2012) 783–792.
- N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London, Ser. A, 454 (1998) 903–995.
- Z. Wu, N. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. Data Anal., 1 (2009) 1–41.
- C.L. Yeh, H.C. Chang, C.H. Wu, P.L. Lee, Extraction of singletrial cortical beta oscillatory activities in EEG signals using empirical mode decomposition, Biomed. Eng. Online, 9 (2010) 25.
- I. Daubechies, Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math., 41 (1988) 909–996.
- B. Vidakovic, C.B. Lozoya, On time-dependent wavelet denoising, IEEE Trans. Signal Process., 46 (1998) 2549–2554.
- J. Adamowski, K.R. Sun, Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds, J. Hydrol., 390 (2010) 85–91.
- M. Sayemuzzaman, M.K. Jha, Seasonal and annual precipitation time series trend analysis in North Carolina, United States, Atmos. Res., 137 (2014) 183–194.
- Z. Hou, W. Lu, S.-M. Chen, Research on precipitation prediction based on WNN, Water Saving Irrig., 3 (2013) 31–34.
- P. Yang, J. Xia, Y. Zhang, S. Hong, Temporal and spatial variations of precipitation in Northwest China during 1960–2013, Atmos Res., 183 (2017) 283–295.
- P. Flandrin, G. Rilling, P. Goncalves, Empirical mode decomposition as a filter bank, IEEE Signal Process. Lett., 11 (2004) 112–114.
- Z. Wu, N.E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method, Proc. R. Soc. London, Ser. A, 460 (2004) 1597–1611.
- D.L. Donoho, I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (1994) 425–455.
- J.L. Elman, Finding structure in time, Cognit. Sci., 14 (1990) 179–211.
- D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature, 323 (1986) 533–536.
- B.-l. Su, Y.-x. Luo, H.-w. Chen, B.-h. Wan, T. Wang, Modeling of hydrological processes in lower plain polder of the Ganjiang river, South-to-North water transfers and water science & technology, 1 (2013) 53–57 (in Chinese).