1. H.C. Poynton, W.E. Robinson, Contaminants of Emerging Concern, with an Emphasis on Nanomaterials and Pharmaceuticals, B. Torok, T. Dransfield, Eds., Green Chemistry: An Inclusive Approach, Elsevier, Cambridge, MA, 3 (2018) 291–315.
  2. G. Latini, C. Felice, G. Presta, A. Del Vecchio, I. Paris, F. Ruggieri, P. Mazzeo, Exposure to di(2-ethylhexyl)phthalate in humans during pregnancy: a preliminary report, Biol. Neonate, 83 (2003) 22–24.
  3. S.B. Abdelmelek, J. Greaves, K.P. Ishida, W.J. Cooper, W. Song, Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes, Environ. Sci. Technol., 45 (2011) 3665–71.
  4. A.P. Wezel, P. Van Vlaardinger, R. Posthumus, G.H. Crommentuijin, D.T.H.M. Sijim, Environmental risk limits for two phthalates, with special emphasis on endocrine disruptive properties, Ecotoxicol. Environ. Saf., 46 (2000) 305–321.
  5. K.M. Gani, A.A. Kazmi, Phthalate contamination in aquatic environment: a critical review of the process factors that influence their removal in conventional and advanced wastewater treatment, Crit. Rev. Environ. Sci. Technol., 46 (2016) 1402–1439.
  6. I. Ipek, N. Kabay, M. Yuksel, Separation of bisphenol A and phenol from water by polymer adsorbents: equilibrium and kinetics studies, J. Water Process Eng., 16 (2017) 206–211.
  7. D.J. Lapworth, N. Baran, M.E. Stuart, R.S. Ward, Emerging organic contaminants in groundwater: a review of sources, fate, and occurrence, Environ. Pollut., 163 (2012) 287–303.
  8. U.S. Environmental Protection Agency, Toxicological Review of Phenol, EPA/635/R-02/006, Washington DC, 2002. Available at:
  9. H.F. Stoeckli, M.V. Lopez-Ramon, D. Hugi-Cleary, A. Guillot, Micropore sizes in activated carbons determined from Dubinin– Radushkevich equation, Carbon, 39 (2001) 1115–1116.
  10. H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon, 40 (2002) 145–149.
  11. J. Rivera-Utrilla, M. Sánchez-Polo, Ozonation of 1,3,6- naphthalenetrisulfonic acid catalysed by activated carbon in aqueous phase, Appl. Catal., B, 39 (2002) 319–329.
  12. O.S. Keen, A.D. Dotson, K.G. Linden, Evaluation of hydrogen peroxide chemical quenching agents following an advanced oxidation process, J. Environ. Eng., 139 (2013) 137–140.
  13. T.F. Oliveira, O. Chedeville, H. Fauduet, B. Cagnon, Use of ozone/activated carbon coupling to remove diethyl phthalate from water: influence of activated carbon textural and chemical properties, Desalination, 276 (2011) 359–365.
  14. D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to Spectroscopy, 3rd ed., Thomson Learning, Inc., Belmont, USA, 2001.
  15. O. Aktas, F. Çeçen, Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon, J. Hazard. Mater., 141 (2007) 769–777.
  16. K.J. Choi, S.G. Kim, C.W. Kim, S.H. Kim, Effects of activated carbon types and service life on removal of endocrinedisrupting chemicals: amitrol, nonylphenol, and bisphenol-A, Chemosphere, 58 (2005) 1535–1545.
  17. H. Park, J.R. Koduru, K. Choo, B. Lee, Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter, J. Hazard. Mater., 286 (2015) 315–324.
  18. D.S. Chaudhary, S. Vigneswaran, V. Jegatheesan, H.H. Ngo, H. Moon, Granular activated carbon (GAC) adsorption in tertiary wastewater treatment: experiments and models, Water Sci. Technol., 47 (2003) 113–120.
  19. J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han, Q. Xu, Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis, Chem. Eng. J., 259 (2015) 53–61.
  20. V.V.S. Guilarduci, J.P. Mesquita, P.B. Martelli, H.F. Gorgulho, Adsorção de fenol sobre carvão ativado em meio alcalino, Quím. Nova, 29 (2006) 1226–1232.
  21. C.S. Barbosa, S.A.A. Santana, C.W.B. Bezerra, H.A.S.S. Silva, Remoção de compostos fenólicos de soluções aquosas utilizando carvão ativado preparado a partir do aguapé (Eichhornia crassipes): estudo cinético e de equilíbrio termodinâmico, Quím. Nova, 37 (2014) 447–453.
  22. B. Cagnon, S. Chatelain, T.F. Oliveira, F. Versaveau, S. Delpeux, O. Chedeville, Adsorption of phthalates on activated carbons in monosolute solution and in mix within complex matrices, Water Air Soil Pollut., 228 (2017) 144–453.
  23. Y. Xiao, R. Fan, L. Zhang, J. Yue, R.D. Webster, T.T. Lim, Photodegradation of iodinated trihalomethanes in aqueous solution by UV 254 irradiation, Water Res., 49 (2014) 275–285.
  24. Y. Xiao, L. Zhang, J. Yue, R.D. Webster, T.T. Lim, Kinetic modeling and energy efficiency of UV/H₂O₂ treatment of iodinated trihalomethanes, Water Res., 75 (2015) 259–269.
  25. Y. Zhang, Y. Xiao, J. Zhang, V.W.C. Chang, T.T. Lim, Direct and indirect photodegradation pathways of cytostatic drugs under UV germicidal irradiation: process kinetics and influences of water matrix species and oxidant dosing, J. Hazard. Mater., 324 (2017) 481–488.
  26. Y. Zhang, Y. Xiao, J. Zhang, V.W.C. Chang, T.T. Lim Degradation of cyclophosphamide and 5-fluorouracil in water using UV and UV/H2O2: kinetics investigation, pathways and energetic analysis, J. Environ. Chem. Eng., 5 (2017) 1133–1139.
  27. Y. Zhang, Y. Xiao, Y. Zhong, T.T. Lima, Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: reaction kinetics, degradation pathways, and antibacterial activity, Chem. Eng. J., 372 (2019) 420–428.
  28. B. Mondal, A. Adak, P. Datta, Effect of operating conditions and interfering substances on photochemical degradation of a cationic surfactant, Environ. Technol., 39 (2018) 2771–2780.
  29. A. Adak, K.P. Mamgalgiri, J. Lee, L. Blaney, UV irradiation and UV-H₂O₂ advanced oxidation of the roxarsone and nitarsone organoarsenicals, Water Res., 70 (2014) 74–85.
  30. B. Mondal, K. Hait, A. Adaka, P. Datt, Effect of operating conditions and interfering substances on photochemical degradation of a cationic surfactant, J. Indian Chem. Soc., 95 (2018) 331–338.
  31. B. Mondal, A. Adaka, P. Datt, Degradation of anionic surfactant in municipal wastewater by UV-H2O2: process optimization using response surface methodology, J. Photochem. Photobiol., A, 375 (2019) 237–243.
  32. Y. Lee, U.V. Gunten, Oxidative transformation of micropollutant and during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical), Water Res., 44 (2010) 555–566.
  33. B. Xu, N.Y. Gao, X.F. Sun, X. Sheng-Ji, R. Min, M.O. Simonnot, C. Causserand, J.F. Zhao, Photochemical degradation of diethyl phthalate with UV/H2O2, J. Hazard. Mater., 139 (2007) 132–139.
  34. N.A. Medellin-Castillo, R. Ocampo-Pérez, R. Leyva-Ramos, M. Sanchez-Polo, J. Rivera-Utrilla, J.D. Méndez-Díaz, Removal of diethyl phthalate from water solution by adsorption, photooxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2, and O3/activated carbon), Sci Total Environ., 142 (2013) 25–35.
  35. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O–) in aqueous solution, J. Phys. Chem., 17 (1988) 513.
  36. J. Rivera-Utrilla, J. Méndez-Díaz, M. Sánchez-Polo, M.A. Ferro-García, I. Bautista-Toledo, Removal of the surfactant sodium dodecylbenzenesulfonate from waster by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O3 and O3/H2O2, Water Res., 40 (2006) 1717–1725.
  37. M.F. Moraes, T.F. Oliveira, J. Cuellar, G.L. Castiglioni, Phenol degradation using adsorption methods, advanced oxidative process (H2O2/UV) and H2O2/UV/activated carbon coupling: influence of homogeneous and heterogeneous phase, Desal. Water Treat., 100 (2017) 38–45.
  38. H. Valdés, A.C. Zaror, Heterogeneous and homogeneous catalytic ozonation of benzothiazole by activated carbon: kinetic approach, Chemosphere, 65 (2006) 1131–1136.
  39. M. Sánchez-Polo, R. Leyva-Ramos, J. Rivera-Utrilla, Kinetics of 1,3,6-naphthalene-tri sulfonic acid ozonation in presence of activated carbon, Carbon, 43 (2005) 962–969.
  40. A. Flouret, M.C. Almeida, T.F. Oliveira, F.P. Sá, Advanced treatment of phenol by H2O2/UV/activated carbon coupling: influence of homogeneous and heterogeneous phase, Can. J. Chem. Eng., 96 (2018) 1979–1985.
  41. L. Dąbek, E. Ozimina, A. Picheta-Oleś, Dye removal efficiency of virgin activated carbon and activated carbon regenerated with Fenton’s reagent, Environ. Prot. Eng., 38 (2012) 5–13.
  42. L. Dąbek, E. Ozimina, A. Picheta-Oleś, Assessing the influence of the presence of heavy metals adsorbed on activated carbon on the efficiency of degradation of phenol using selected oxidizing agents, Ecol. Chem. Eng. S, 19 (2012) 249–257.
  43. T.F. Oliveira, B. Cagnon, O. Chedeville, H. Fauduet, Removal of a mix of endocrine disrupter from different natural matrices by ozone/activated carbon coupling process, Desal. Water Treat., 52 (2014) 4395–4403.
  44. P.C.C. Faria, M.F.R. Fereira, J.J.M. Orfão, Ozone decomposition in water catalyzed by activated carbon: influence of chemical and textural properties, Ind. Eng. Chem. Res., 45 (2006) 2715–2721.
  45. T.F. Oliveira, B. Cagnon, O. Chedeville, H. Fauduet, Traitement d’un effluent contenant du diéthylphtalate par le couplage ozone/charbon actif: Évolution de la toxicité et de la minéralization, in Récents Progrès en Génie des Procédés, Proc. 13ème congrés de la Société Françaíse de Génie des Procédés, ed., SFGP, Lille, France, 2011, p. 101.