1. Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: a review, J. Hazard. Mater., 262 (2013) 189–211.
  2. F.R. Xiu, Y.F. Li, Y.Y. Qi, X. Yu, J.H. He, Y.W. Lu, X. Gao, Y.H. Deng, Z.Q. Song, A novel treatment of waste printed circuit boards by low-temperature near-critical aqueous ammonia: debromination and preparation of nitrogen-containing fine chemicals, Waste Manage., 84 (2019) 355–363.
  3. C.Y. Lu, W.S. Guan, T.K.A. Hoang, J.F. Guo, H.G. Gou, Y. Yao, Visible-light-drivencatalytic degradation of ciprofloxacin on metal (Fe, Co, Ni) doped titanate nanotubes synthesized by a one-pot approach, J. Mater. Sci.- Mater. Electron., 27 (2016) 1966–1973.
  4. F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, W.X. Hou, C. Wang, W.L. Shi, C.Y. Lu, Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-onmicrorods structure for enhanced photocatalytic activity towards tetracycline degradation, Appl. Surf. Sci., 491 (2019) 88–94.
  5. W.L. Shi, H.J. Ren, M.Y. Li, K.K. Shu, Y.S. Xu, C. Yan, Y.B. Tang, Tetracycline removal from aqueous solution by visible-lightdriven photocatalytic degradation with low-cost red mud wastes, Chem. Eng. J., 382 (2020) 122876–122883.
  6. W.L. Shi, H.J. Ren, X.L. Huang, M.Y. Li, Y.B. Tang, F. Guo, Lowcost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis, Sep. Purif. Technol., 237 (2020) 116477–116484.
  7. F. Guo, W.L. Shi, H.B. Wang, M.M. Han, W.S. Guan, H. Huang, Y. Liu, Z.H. Kang, Study on highly enhanced photocatalytic tetracycline degradation of type II AgI/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts, J. Hazard. Mater., 349 (2018) 111–118.
  8. L. Bing, Z. Tong, Biodegradation and adsorption of antibiotics in the activated sludge process, Environ. Sci. Technol., 44 (2010) 3468–3473.
  9. D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibanez, I.D. Somma, Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications, a comprehensive approach, Appl. Catal., B, 170–171 (2015) 90–123.
  10. F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, K.K. Shu, W.L. Shi, C.Y. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol., 228 (2019) 115770–115776.
  11. W.L. Shi, F. Guo, S.L. Yuan, In-situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visiblelight irradiation, Appl. Catal., B, 209 (2017) 720–728.
  12. J. Xia, J. Di, H. Li, H. Xu, H. Li, S. Guo, Ionic liquid-induced strategy for carbon quantum dots/BiOX (X = Br, Cl) hybrid nanosheets with superior visible-light-driven photocatalysis, Appl. Catal., B, 181 (2016) 260–269.
  13. L.P. Wang, G.P. Yang, D. Wang, C.Y. Lu, W.S. Guan, Y.L. Li, J. Deng, J. Crittenden, Fabrication of the flower-flake-like CuBi2O4/Bi2WO6 heterostructure as efficient visible-light-driven photocatalysts: performance, kinetics and mechanism insight, Appl. Surf. Sci., 495 (2019) 143521.
  14. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
  15. Q. Wu, R.V.D. Krol, Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: role of oxygen vacancies and iron dopant, J. Am. Chem. Soc., 134 (2012) 9369–9375.
  16. M. Baradaran, F.E. Ghodsi, C. Bittencourt, E. Llobet, The role of Al concentration on improving the photocatalytic performance of nanostructured ZnO/ZnO:Al/ZnO multilayer thin films, J. Alloys Compd., 788 (2019) 289–301.
  17. J.F. Guo, P.T. Li, Z. Yang, A novel Z-scheme g-C3N4/LaCoO3 heterojunction with enhanced photocatalytic activity in degradation of tetracycline hydrochloride, Catal. Commun., 122 (2019) 63–67.
  18. W.L. Shi, F. Guo, M.Y. Li, Y. Shi, M.J. Shi, C. Yan, Constructing 3D sub-micrometer CoO octahedrons packed with layered MoS2 shell for boosting photocatalytic overall water splitting activity, Appl. Surf. Sci., 473 (2019) 928–933.
  19. L.P. Wang, T.T. Huang, G.P. Yang, C.Y. Lu, F.L. Dong, Y.L. Li, W.S. Guan, The precursor-guided hydrothermal synthesis of CuBi2O4/WO3 heterostructure with enhanced photoactivity under simulated solar light irradiation and mechanism insight, J. Hazard. Mater., 381 (2020) 120956–120967.
  20. C.Y. Lu, F. Guo, Q.Z. Yan, Z.J. Zhang, D. Li, L.P. Wang, Y.H. Zhou, Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic activity under simulated solar light degradation of tetracycline, J. Alloys Compd., 811 (2019) 151976.
  21. Y.F. Liu, Y.Y. Zhu, J. Xu, X.J. Bai, R.L. Zong, Y.F. Zhu, Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2, Appl. Catal., B, 142 (2013) 561–567.
  22. C.S. Pan, Y.F. Zhu, New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye, Environ. Sci. Technol., 44 (2010) 5570–5574.
  23. M. Roming, C. Feldmann, Synthesis and characterization of nanoscaled BiPO4 and BiPO4:Tb, J. Mater. Sci., 44 (2009) 1412–1415.
  24. J.Y. Liu, Y. Bai, P.Y. Luo, P.Q. Wang, One-pot synthesis of graphene-BiOBr nanosheets composite for enhanced photocatalytic generation of reactive oxygen species, Catal. Commun., 42 (2013) 58–61.
  25. M. Gao, D. Zhang, X. Pu, H. Ma, C. Su, X. Gao, J. Dou, Surface decoration of BiOBr with BiPO4, nanoparticles to build heterostructure photocatalysts with enhanced visible-light photocatalytic activity, Sep. Purif. Technol., 170 (2016) 183–189.
  26. Y.N. Zhang, H.Q. Fan, M.M. Li, Ag/BiPO4 heterostructures: synthesis, characterization and their enhanced photocatalytic properties, Dalton Trans., 42 (2013) 13172–13178.
  27. J.Q. Li, H. Yuan, Z.F. Zhu, First-principles energy band calculation and one-step synthesis of N-doped BiPO4, J. Alloys Compd., 640 (2015) 290–297.
  28. W. Maisang, A. Phuruangrat, C. Randorn, S. Kungwankunakorn, S. Thongtem, O. Wiranwetchayan, S. Wannapop, S. Choopun, S. Kaowphong, T. Thongtem, Enhanced photocatalytic performance of visible-light-driven BiOBr/BiPO4 composites, Mater. Sci. Semicond. Process., 75 (2018) 319–326
  29. H. Lv, Y. Liu, H. Tang, P. Zhang, J. Wang, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles, Appl. Surf. Sci., 425 (2017) 100–106.
  30. W.L. Shi, M.Y. Li, H.J. Ren, F. Guo, X.L. Huang, Y. Shi, Y.B. Tang, Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-lightdriven photocatalytic activity, Beilstein J. Nanotechnol., 10 (2019) 1360–1367.
  31. Y. Chen, X.L. Jin, P. Guo, Preparation of Fe3O4/BiPO4 magnetic nanocomposite and its photocatalytic performance, J. Mol. Struct., 1171 (2018) 140–149.
  32. Q. Liang, J. Jin, C.H. Liu, S. Xu, C. Yao, Z.Y. Li, A stable BiPO4/g-C3N4 nanosheet composite with highly enhanced visible-light photocatalytic activity, J. Mater. Sci.- Mater. Electron., 29 (2018) 2509–2516.
  33. Y. Guo, P.F. Wang, J. Qian, Y.H. Ao, C. Wang, J. Hou, Phosphate group grafted twinned BiPO4 with significantly enhanced photocatalytic activity: synergistic effect of improved charge separation efficiency and redox ability, Appl. Catal., B, 234 (2018) 90–99.
  34. G. Tan, L. She, T. Liu, C. Xu, H. Ren, A. Xia, Ultrasonic chemical synthesis of hybrid mpg-C3N4/BiPO4, heterostructured photocatalysts with improved visible-light photocatalytic activity, Appl. Catal., B, 207 (2017) 120–133.
  35. B.Y. Peng, S.S. Zhang, S.Y. Yang, H.J. Wang, H. Yu, S.Q. Zhang, F. Peng, Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation, Mater. Res. Bull., 56 (2014) 19–24.
  36. F. Dong, Z.Y. Wang, Y.H. Li, W.K. Ho, S.C. Lee, Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible-light photocatalytic air purification with real indoor illumination, Environ. Sci. Technol., 48 (2014) 10345–10353.