1. J. Zhao, X.Q. Lu, J.H. Luo, J.Y. Liu, Y.F. Xu, A.H. Zhao, F. Liu, J. Tai, G.R. Qian, B. Peng, Characterization of fresh leachate from a refuse transfer station under different seasons, Int. Biodeterior. Biodegrad., 85 (2013) 631–637.
  2. L. Miao, G. Yang, T. Tao, Y. Peng, Recent advances in nitrogen removal from landfill leachate using biological treatments–a review, J. Environ. Manage., 235 (2019) 178–185.
  3. C. Yuan, C. Lu, Y. Ma, Y. Wang, Y. Xie, K. Zhang, Y. Wang, L. Lv, X. Feng, T. Zhu, A novel method to treat old landfill leachate combining multi-stage biological contact oxidation (MBCO) and single-stage autotrophic nitrogen removal using anammox and partial nitrification (SNAP), Chem. Eng. J., 359 (2019) 1635–1643.
  4. M.S. Yusoff, H.A. Aziz, M.F.M.A. Zamri, A.Z. Abdullah, N.E.A. Basri, Floc behavior and removal mechanisms of crosslinked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation-flocculation treatment, Waste Manage., 74 (2018) 362–372.
  5. A.R. Ishak, F.S. Hamid, S. Mohamad, K.S. Tay, Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process, Waste Manage., 76 (2018) 575–581.
  6. M. Saleem, A. Spagni, L. Alibardi, A. Bertucco, M.C. Lavagnolo, Assessment of dynamic membrane filtration for biological treatment of old landfill leachate, J. Environ. Manage., 213 (2018) 27–35.
  7. L. Azzouz, N. Boudjema, F. Aouichat, M. Kherat, N. Mameri, Membrane bioreactor performance in treating Algiers’ landfill leachate from using indigenous bacteria and inoculating with activated sludge, Waste Manage., 75 (2018) 384–390.
  8. Q. Xu, G. Siracusa, S. Di Gregorio, Q. Yuan, COD removal from biologically stabilized landfill leachate using advanced oxidation processes (AOPs), Process Saf. Environ. Prot., 120 (2018) 278–285.
  9. N. Savchuk, P. Krizova, Membrane, AOPs processes—their application and comparison in treatment of wastewater with high organics content, Desal. Water Treat., 56 (2015) 3247–3251.
  10. E.M. Kiley, V.V. Yakovlev, K. Ishizaki, S. Vaucher, Applicability study of classical and contemporary models for effective complex permittivity of metal powders, J. Microwave Power Electromagn. Energy, 46 (2012) 26–38.
  11. T. Yousefi, S.A. Mousavi, M.Z. Saghir, B. Farahbakhsh, An investigation on the microwave heating of flowing water: a numerical study, Int. J. Therm. Sci., 71 (2013) 118–127.
  12. V. Abdelsayed, D. Shekhawat, M.W. Smith, D. Link, A.E. Stiegman, Microwave-assisted pyrolysis of Mississippi coal: a comparative study with conventional pyrolysis, Fuel, 217 (2018) 656–667.
  13. Y.F. Huang, P.T. Chiueh, W.H. Kuan, S.L. Lo, Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics, Energy, 100 (2016) 137–144.
  14. N. Van Suc, Removal of direct dyes from aqueous solution by adsorption onto the mangrove charcoal activated by microwave-induced phosphoric acid, Desal. Water Treat., 118 (2018) 304–313.
  15. C. Yin, J. Cai, L. Gao, J. Yin, J. Zhou, Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method, J. Hazard. Mater., 305 (2016) 15–20.
  16. C.M. Park, J. Heo, D. Wang, C. Su, Y. Yoon, Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine-disrupting compounds in water, Appl. Catal., B, 225 (2018) 91–99.
  17. D. Wu, X. Li, J. Zhang, W. Chen, P. Lu, Y. Tang, L. Li, Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation, Sep. Purif. Technol., 207 (2018) 255–261.
  18. M. Arbabi, M. Sadeghi, A. Fadaei, S. Hemati, S. Shahsavan, Evaluation of sulfadiazine (SDZ) removal from wastewater by persulfate activated with iron sulfate, Desal. Water Treat., 113 (2018) 160–164.
  19. G. Fan, L. Cang, H.I. Gomes, D. Zhou, Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of different activation methods, Chemosphere, 144 (2016) 138–147.
  20. G. Fang, W. Wu, C. Liu, D.D. Dionysiou, Y. Deng, D. Zhou, Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study, Appl. Catal., B, 202 (2017) 1–11.
  21. D.M. Stanbury, Reduction potentials involving inorganic free radicals in aqueous solution, Adv. Inorg. Chem., 33 (1989) 69–138.
  22. R. Xie, J. Ji, K. Guo, D. Lei, Q. Fan, D. Y. Leung, H. Huang, Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: roles of sulfate and hydroxyl radicals, Chem. Eng. J., 356 (2019) 632–640.
  23. A. Fernandes, P. Makoś, G. Boczkaj, Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions, J. Cleaner Prod., 195 (2018) 374–384.
  24. J.E. Silveira, J.A. Zazo, G. Pliego, E.D. Bidóia, P.B. Moraes, Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology, Environ. Sci. Pollut. Res., 22 (2015) 5831–5841.
  25. A.K. Nayak, A. Pal, Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: singleand multi–parameter optimization studies, J. Environ. Manage., 217 (2018) 573–591.
  26. R. Shokoohi, M.T. Samadi, M. Amani, Y. Poureshgh, Optimizing laccase-mediated amoxicillin removal by the use of Box–Behnken design in an aqueous solution, Desal. Water Treat., 119 (2018) 53–63.
  27. S.L. Wong, N. Ngadi, N.A.S. Amin, T.A.T. Abdullah, I.M. Inuwa, Pyrolysis of low-density polyethylene waste in subcritical water optimized by response surface methodology, Environ. Technol., 37 (2016) 245–254.
  28. C.Y. Wu, W.B. Lui, J. Peng, Optimization of extrusion variables and maleic anhydride content on biopolymer blends based on poly (hydroxybutyrate-co-hydroxyvalerate)/poly (vinyl acetate) with tapioca starch, Polymers, 10 (2018) 827.
  29. Y.C. Chou, S.L. Lo, J. Kuo, C.J. Yeh, A study on microwave oxidation of landfill leachate—contributions of microwavespecific effects, J. Hazard. Mater., 246 (2013) 79–86.
  30. Y.C. Chou, S.L. Lo, J. Kuo, C.J. Yeh, Derivative mechanisms of organic acids in microwave oxidation of landfill leachate, J. Hazard. Mater., 254 (2013) 293–300.
  31. Y.C. Chou, S.L. Lo, J. Kuo, C.J. Yeh, Microwave-enhanced persulfate oxidation to treat mature landfill leachate, J. Hazard. Mater., 284 (2015) 83–91.
  32. D. Fatta, A. Papadopoulos, M. Loizidou, A study on the landfill leachate and its impact on the groundwater quality of the greater area, Environ. Geochem. Health, 21 (1999) 175–190.
  33. M.A. Zazouli, S. Nasseri, A.H. Mahvi, A.R. Mesdaghinia, M. Gholami, Study of natural organic matter fractions in water sources of Tehran, Pak. J. Biol. Sci., 10 (2007) 1718–1722.
  34. M. Khajeh, Application of Box–Behnken design in the optimization of a magnetic nanoparticle procedure for zinc determination in analytical samples by inductively coupled plasma optical emission spectrometry, J. Hazard. Mater., 172 (2009) 385–389.
  35. B. Kayan, B. Gözmen, Degradation of acid red 274 using H2O2 in subcritical water: application of response surface methodology, J. Hazard. Mater., 201 (2012) 100–106.
  36. M.J. Bashir, H.A. Aziz, M.S. Yusoff, New sequential treatment for mature landfill leachate by cationic/anionic and anionic/cationic processes: optimization and comparative study, J. Hazard. Mater., 186 (2011) 92–102.
  37. R.B. D’agostino, A. Belanger, R.B. D’agostino Jr, A suggestion for using powerful and informative tests of normality, Am. Stat., 44 (1990) 316–321.
  38. M. Kuhn, Desirability: Function Optimization and Ranking via Desirability Functions, R package v.2.1, 2016, Available at:
  39. P. Kirmizakis, C. Tsamoutsoglou, B. Kayan, D. Kalderis, Subcritical water treatment of landfill leachate: application of response surface methodology, J. Environ. Manage., 146 (2014) 9–15.
  40. Z.M. Abou-Gamra, Kinetic and thermodynamic studies for oxidation of rosaniline hydrochloride dye by persulfate in ambient temperatures, Desal. Water Treat., 57 (2016) 8809–8814.