1. L. Barrott, Chloral hydrate: formation and removal by drinking water treatment, J. Water Supply Res. Technol. AQUA, 6 (2014) 381–390.
  2. A. Dąbrowska, J. Nawrocki, Controversies about the occurrence of chloral hydrate in drinking water, Water Res., 43 (2009) 2201–2208.
  3. I. Zimoch, E. Lobos, Evaluation of health risk caused by chloroform in drinking water, Desal. Water Treat, 57 (2016) 1027–1033.
  4. China National Standardization Management Committee, Standards for Drinking Water Quality GB 5749-2006, Chinese Ministry of Health, Beijing, 2006, p. 4.
  5. M. Rajca, A. Wlodyka-Bergier, M. Bodzek, T. Bergier, MIEX (R) DOC process to remove disinfection by-product precursors, Desal. Water Treat., 64 (2017) 372–377.
  6. J. Jiang, X. Zhang, X. Zhu, Y. Li, Removal of intermediate aromatic halogenated DBPs by activated carbon adsorption: a new approach to controlling halogenated DBPs in chlorinated drinking water, Environ. Sci. Technol., 51 (2017) 3435–3444.
  7. J. Jiang, W. Li, X. Zhang, J. Liu, X. Zhu, A new approach to controlling halogenated DBPs by GAC adsorption of aromatic intermediates from chlorine disinfection: effects of bromide and contact time, Sep. Purif. Technol., 203 (2018) 260–267.
  8. J. Jiang, X. Zhang, A smart strategy for controlling disinfection by-products by reversing the sequence of activated carbon adsorption and chlorine disinfection, Sci. Bull., 63 (2018) 1167–1169.
  9. P. Roy, D. Kumar, M. Ghosh, A. Majumder, Disinfection of water by various techniques - comparison based on experimental investigations, Desal. Water Treat., 57 (2016) 28141–28150.
  10. B.K. Koudjonou, G.L. LeBel, Halogenated acetaldehydes: analysis, stability and fate in drinking water, Chemosphere, 64 (2006) 795–802.
  11. R. Sadiq, M. Rodriguez, Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review, Sci. Total Environ., 321 (2004) 21–46.
  12. J. Xu, Z. Munan, J. Feng, C. Chongwei, Study on Model Prediction of Trichloromethane Generation as a by-product of Chlorination of Raw Water in Northeast China, J. Harbin Inst. Technol., Harbin, China, 2020, (in Chinese).
  13. K. Preacher, P. Curran, D. Bauer, Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis, J. Edu. Behav. Stat., 31 (2006) 437–448.
  14. J. Angrist, Estimation of limited dependent variable models with dummy endogenous regressors: simple strategies for empirical practice, J. Bus. Econ. Stat., 19 (2001) 2–16.
  15. J. Lin, X. Chen, Z. Ansheng, H. Hong, Y. Liang, H. Sun, H. Lin, J. Chen, Regression models evaluating THMs, HAAs and HANs formation upon chloramination of source water collected from Yangtze River Delta Region, China, Ecotoxicol. Environ. Saf., 160 (2018) 249–256.
  16. A. Justel, D. Pena, R. Zamar, A multivariate Kolmogorov- Smirnov test of goodness of fit, Stat. Probab. Lett., 35 (1997) 251–259.
  17. J. Willett, A. Sayer, Using covariance structure-analysis to detect correlates and predictors of individual change over time, Psychol. Bull., 116 (1994) 363–381.
  18. D. Gebregiorgis, D. Rayner, H. Linderholm, Does the IOD independently influence seasonal monsoon patterns in Northern Ethiopia?, Atmosphere-Basel, 10 (2019), doi: 10.3390/ atmos10080432.
  19. B. Byrne, R. Shavelson, B. Muthen, Testing for the equivalence of factor covariance and mean structures - the issue of partial measurement invariance, Psychol. Bull., 105 (1989) 456–466.
  20. G. Cheung, R. Rensvold, Evaluating goodness-of-fit indexes for testing measurement invariance, Struct. Equation Model., 9 (2002) 233–255.
  21. Y. Kirby, R. McNew, J. Kirby, R. Wideman, Evaluation of logistic versus linear regression models for predicting pulmonary hypertension syndrome (Ascites) using cold exposure or pulmonary artery clamp models in broilers, Poultr. Sci., 76 (1997) 392–399.
  22. T. Burkholder, R. Lieber, Stepwise regression is an alternative to splines for fitting noisy data, J. Biomech., 29 (1996) 235–238.
  23. J. Lin, Y. Zhao, H. Wang, Heteroscedasticity diagnostics in varying-coefficient partially linear regression models and applications in analyzing Boston housing data, J. Appl. Stat., 42 (2015) 2432–2448.
  24. L. Godfrey, Alternative approaches to implementing Lagrange multiplier tests for serial correlation in dynamic regression models, Comput. Stat. Data Anal., 51 (2007) 3282–3295.