References

  1. D.Q. Zhang, X.M. He, Q.R. Cai, L.X. Gao, G.S. Kim, pH and iodide ion effect on corrosion inhibition of histidine selfassembled monolayer on copper, Thin Solid Films, 518 (2010) 2745–2749.
  2. H.M. Ezuber, A.W. Al Shater, A. Badawy, Influence environmental of parameters on the corrosion behavior of 90/10 cupronickel tubes in 3.5% NaCl, Desal. Wat. Treat., 57 (2016) 6670–6679.
  3. J.A. Carew, M. Abdeljawad, Y. Alwazzan, Evaluation of corrosion-resistant alloys for desalination applications, Desalination 95 (1994) 53–74.
  4. A. Moreau, Study of the oxidation-reduction mechanism of copper in hydrochloric-acid solutions. 2. The Cu-CuCl-CuCl2(-) and Cu-Cu2(OH)3Cl+Cu2+ systems, Electrochim. Acta, 26 (1981) 1609–1616.
  5. A. Al-Hashem, J. Carew, The use of electrochemical impedance spectroscopy to study the effect of chlorine and ammonia residuals on the corrosion of copper-based and nickel-based alloys in seawater, Desalination, 150 (2002) 255–262.
  6. C. Deslouis, O.R. Mattos, M.M. Musiani, B. Tribollet, Comments on mechanisms of copper electrodissolution in chloride media, Electrochim. Acta, 38 (1993) 2781–2783.
  7. S.L. da Costa, S.M. Agostinho, K. Nobe, Rotating ring-disk, electrode studies of Cu‐Zn alloy electrodissolution in 1M HCl: effect of benzotriazole, J. Electrochem. Soc., 140 (1993) 3483–3488.
  8. A. Atta, G. El-Mahdy, H. Al-Lohedan, Preparation and application of crosslinked poly(sodium acrylate)-coated magnetite nanoparticles as corrosion inhibitors for carbon steel alloy, Molecules, 20 (2015) 1244–1261.
  9. H. Wilson, Near-infrared Fourier transform surface enhanced Raman scattering detection of mercaptobenzothiazole on smooth copper, Vib. Spectrosc., 7 (1994) 287–291.
  10. A.R. Katritzky, X. Lan, J.Z. Yang, O.V. Denisko, Properties and synthetic utility of N-substituted benzotriazoles, Chem. Rev., 98 (1998) 409–548.
  11. T.T. Qin, J. Li, H.Q. Luo, M. Li, N.B. Li, Corrosion inhibition of copper by 2,5-dimercapto-1,3,4-triadiazole monolayer in acidic solution, Corros. Sci., 53 (2011) 1072–1078.
  12. A. Satapathy, K.G. Gunasekaran, S.C. Sahoo, Corrosion inhibition by justicia gendarussa plant extra in hydrochloric acid solution, Corros. Sci., 51 (2009) 2848–2856.
  13. Z. Tao, S. Zhang, W. Li, Corrosion inhibition of mild steel in acidic solution by some oxo-trizole derivatives, Corros. Sci., 51 (2009) 2588–2595.
  14. M. Hosseini, M. Sfl, M. Ghorbani, Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media, Mater. Chem. Phys., 78 (2003) 800–808.
  15. E.M. Sherif, S.M. Park, Inhibition of copper corrosion in 3.0% NaCl solution by N-phenyl-1,4-phenylenediamine, J. Electrochem. Soc., 152 (2005) B428–B433.
  16. S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, R. Serra, S.K. Poznyak, M.G.S. Ferreira, Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability, Prog. Org. Coat., 58 (2007) 127–135.
  17. S.M. Sherif, R.M. Erasmus, J.D. Comins, Inhibition of copper corrosion in acidic chloride pickling solutions by 5-(3-aminophenyl)-tetrazole as a corrosion inhibitor, Corros. Sci., 50 (2008) 3439–3445.
  18. S. Hong, W. Chen, H.Q. Luo, Inhibition effect of 4-aminoantipyrine on the corrosion of copper in 3 wt.% NaCl solution, Corros. Sci., 57 (2012) 270–278.
  19. D.K. Yadav, M.A. Quraishi, B. Maiti, Inhibition effect of some benzylidenes on mild steel in 1 M HCl: an experimental and theoretical correlation, Corros. Sci., 55 (2012) 254–266.
  20. W. Li, Q. He, C.L. Pei, B.R. Hou, Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media, Electrochim. Acta, 52 (2007) 6386–6394.
  21. K.G. Zhang, W.Z. Yang, X.S. Yin, Y. Chen, Y. Liu, J.X. Le, B. Xu, Amino acids modified konjac glucomannan as green corrosion inhibitors for mild steel in HCl solution, Carbohydr. Polym., 181 (2018) 191–199.