1. M. El Bastawesy, S. Adel, I.N.L. Mohamed, Management of waste water discharge within the Nile Valley of Egypt: the collapse of Al Ballanah waste water’s lake in Aswan in September 2013, Egypt. J. Remote Sens. Space Sci., 21 (2018) 149–158.
  3. P. Hoornaert, Reverse Osmosis: EPO Applied Technology Series, v4, 1984, pp. 97–105, ISBN 0-08-031144-X, Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 0BW, England.
  4. V. Barbosa Brião, A.C. Vieira Salla, T. Miorando, M. Hemkemeier, D.P. Cadore Favaretto, Water recovery from dairy rinse water by reverse osmosis: giving value to water and milk solids, Resour. Conserv. Recycl., 140 (2019) 313–323.
  5. Y. Uojima, Operation of reverse osmosis process for industrial waste water reclamation, Desalination, 23 (1977) 87–95.
  6. C.R. Bartels, Reverse Osmosis Membranes Play Key Role in Wastewater Reclamation, 2006, Available at:
  7. M.A. Sharaf, A.S. Nafey, L. Garcia-Rodriguez, Thermoeconomic analysis of a combined solar organic Rankine cycle reverse osmosis desalination process with different energy recovery configurations, Desalination, 261 (2010) 138–147.
  8. M.A. Sharaf Eldean, Design and Simulation of Solar Desalination Systems, Ph.D. Thesis, 2011, Suez Canal University, Faculty of Petroleum & Mining Engineering, Bibliography No.: 11114571.
  9. A.S. Nafey, M.A. Sharaf. Combined solar organic Rankine cycle with reverse osmosis desalination process: energy, exergy, and cost evaluations, Renewable Energy, 35 (2010) 2571–2580.
  10. M.A. Sharaf, Thermo-economic comparisons of different types of solar desalination processes, J. Solar Energy Eng., 134 (2012) 031001.
  11. A.M. Delgado-Torres, L. García-Rodríguez, V.J. Romero-Ternero, Preliminary design of a solar thermal-powered seawater reverse osmosis system, Desalination, 216 (2007) 292–305.
  12. A.M. Delgado-Torres, L. García-Rodríguez, Status of solar thermal driven reverse osmosis desalination, Desalination, 216 (2007) 242–251.
  13. A.M. Delgado-Torres, L. García-Rodríguez, Comparison of solar technologies for driving a desalination system by means of an organic Rankine cycle, Desalination, 216 (2007) 276–291.
  14. E.Sh. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis, A direct coupled photovoltaic seawater reverse osmosis desalination system toward battery based systems-a technical and economical experimental comparative study, Desalination 221 (2008) 17–22.
  15. A.M. Helal, S.A. Al-Malek, E.S. Al-Katheeri, Economic feasibility of alternative designs of a PV-RO desalination unit for remote areas in the United Arab Emirates, Desalination, 221 (2008) 1–16.
  16. D. Manolakos, E.Sh. Mohamed, I. Karagiannis, G. Papadakis, Technical and economic comparison between PV-RO system and RO-Solar Rankine system. Case study: Thirasia Island, Desalination, 221 (2008) 37–46.
  17. G.E. Ahmad, J. Schmid, Feasibility study of brackish water desalination in the Egyptian deserts and rural regions using PV systems, Energy Convers. Manage., 43 (2002) 2641–2649.
  18. E. Tzen, K. Perrakis, P. Baltas, Design of a standalone PV-desalination system for rural areas, Desalination, 119 (1998) 327–334.
  19. A.A. Hossam-Eldin, K.A. Abed, K.H. Youssef, H. Kotb, Technoeconomic optimization and new modeling technique of PV-wind-reverse osmosis desalination plant at variable load conditions, Int. J. Environ. Sci. Dev., 10 (2019) 223–230.
  20. C. Ghenai, A. Merabet, T. Salameh, E.C. Pigem, Grid-tied and stand-alone hybrid solar power system for desalination plant, Desalination, 435 (2018) 172–180.
  21. M. Gökçek, Integration of hybrid power (wind-photovoltaic diesel-battery) and seawater reverse osmosis systems for small-scale desalination applications, Desalination, 435 (2018) 210–220.
  22. M. Laissaoui, P. Palenzuela, M.A. Sharaf Eldean, D. Nehari, D.-C. Alarcón-Padilla, Techno-economic analysis of a standalone solar desalination plant at variable load conditions, Appl. Therm. Eng.,133 (2018) 659–670.
  23. Z. Wang, X. Lin, N. Tong, Z. Li, S. Sun, C. Liu, Optimal planning of a 100% renewable energy island supply system based on the integration of a concentrating solar power plant and desalination units, Int. J. Electr. Power Energy Syst., 117 (2020) 105707.
  24. N. Mousavi, G. Kothapalli, D. Habibi, M. Khiadani, C.K. Das, An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses, Appl. Energy, 247 (2019) 228–236.
  25. H. Zhang, Z. Lu, W. Hu, Y. Wang, L. Dong, J. Zhang, Coordinated optimal operation of hydro–wind–solar integrated systems, Appl. Energy, 242 (2019) 883–896.
  26. Z. Liu, Z. Zhang, R. Zhuo, X. Wang, Optimal operation of independent regional power grid with multiple wind solar hydro-battery power, Appl. Energy, 235 (2019) 1541–1550.
  27. S. Camal, F. Teng, A. Michiorri, G. Kariniotakis, L. Badesa, Scenario generation of aggregated wind, photovoltaics and small hydro production for power systems applications, Appl. Energy, 242 (2019) 1396–1406.
  28. A.S. Kocaman, V.Modi, Value of pumped hydro storage in a hybrid energy generation and allocation system, Appl. Energy, 205 (2017) 1202–1215.
  29. S. Han, L.-na. Zhang, Y.-q. Liu, H. Zhang, J. Yan, L. Li, X.-h. Lei, X. Wang, Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio, Appl. Energy, 236 (2019) 973–984.
  30. A.S. Nafey, M.A. Sharaf, L. Garcia-Rodriguez, A new visual library for design and simulation of solar desalination systems (SDS), Desalination, 259 (2010) 197–207.
  31. M.A. Sharaf Eldean, A.M. Soliman, A new visual library for modeling and simulation of renewable energy desalination systems (REDS), Desal. Water Treat., 51 (2013) 6905–6920.
  34. M.A. Sharaf Eldean, K.M. Rafi, A.M. Soliman, Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton, Energy Convers. Manage., 150 (2017) 651–668.
  35. V. Siva Reddy, S.C. Kaushik, S.K. Tyagi, Exergetic analysis and performance evaluation of parabolic dish Stirling engine solar power plant, Int. J. Energy Res., 37 (2013) 1287–1301.
  36. A.Z. Hafez, A. Soliman, K.A. El-Metwally, I.M. Ismail, Solar parabolic dish Stirling engine system design, simulation, and thermal analysis, Energy Convers. Manage., 126 (2016) 60–75.
  37. K. Lovegrove, W. Stein, Concentrating Solar Power Technology, Principles, Developments and Applications, 1st ed., Woodhead Publishing, 19th October 2012, ISBN: 9780857096173.
  38. Renewable Energy Technologies: Cost Analysis Series, Vol. 1, International Renewable Energy Agency IRENA, Available at:
  39. W. Mark, B. Craig, Optimization of seawater RO systems design, Desalination, 173 (2005) 1–12.
  40. H.T. El-Dessouky, H.M. Ettouney, Fundamentals of Salt Water Desalination, Elsevier Science, 20th March 2002, ISBN: 9780080532127.
  41. B. Kongtragool, S. Wongwises, A review of solar-powered Stirling engines and low temperature differential Stirling engines, Renewable Sustainable Energy Rev., 7 (2003) 131–154.
  42. P.K. Nag, Basic and Applied Thermodynamics, Tata McGraw-Hill, New Delhi, 2002.
  43. A.M.A. Al-Dafaie, M.-E. Dahdolan, M.A. Al-Nimr, Utilizing the heat rejected from a solar dish Stirling engine in potable water production, Solar Energy, 136 (2016) 317–326.
  44. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, John Wiley & Sons Inc., Hoboken, NJ, 2013.
  45. P.R. Fraser, Stirling Dish System Performance Prediction Model, M.Sc. Thesis, University of Wisconsin-Madison, Madison, 2008.
  46. Z. Husain, Mohd.Z. Abdullah, Z. Alimuddin, Basic Fluid Mechanics and Hydraulic Machines, 2008.
  47. Higher Institute of Agricultural Techniques, Al-Marj, Libya, Available at: