1. A. Tiraferri, N.Y. Yip, W.A. Phillip, J.D. Schiffman, M. Elimelech, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, J. Membr. Sci., 367 (2011) 340–352.
  2. R.W. Holloway, T.Y. Cath, K.E. Dennett, A.E. Childress, Forward Osmosis for Concentration of Anaerobic Digester Concentrate, Proceedings of the AWWA Membrane Technology Conference and Exposition, Phoenix, AZ, 2005.
  3. A.M. Awad, R. Jalab, J. Minier-Matar, S. Adham, M.S. Nasser, S.J. Judd, The status of forward osmosis technology implementation, Desalination, 461 (2019) 10–21.
  4. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  5. S. Zhang, K.Y. Wang, T.-S. Chung, Y. Jean, H. Chen, Molecular design of the cellulose ester-based forward osmosis membranes for desalination, Chem. Eng. Sci., 66 (2011) 2008–2018.
  6. R.C. Ong, T.-S. Chung, B.J. Helmer, J.S. de Wit, Novel cellulose esters for forward osmosis membranes, Ind. Eng. Chem. Res., 51 (2012) 16135–16145.
  7. G. Han, T.-S. Chung, M. Toriida, S. Tamai, Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination, J. Membr. Sci., 423 (2012) 543–555.
  8. K.Y. Wang, T.S. Chung, G. Amy, Developing thin-film composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization, AICHE J., 58 (2012) 770–781.
  9. C. Qiu, S. Qi, C.Y. Tang, Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes, J. Membr. Sci., 381 (2011) 74–80.
  10. Q. Saren, C.Q. Qiu, C.Y. Tang, Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly, Environ. Sci. Technol., 45 (2011) 5201–5208.
  11. M. Amini, M. Jahanshahi, A. Rahimpour, Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes, J. Membr. Sci., 435 (2013) 233–241.
  12. P. Zhong, X. Fu, T.-S. Chung, M. Weber, C. Maletzko, Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates, Environ. Sci. Technol., 47 (2013) 7430–7436.
  13. P. Sukitpaneenit, T.-S. Chung, High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production, Environ. Sci. Technol., 46 (2012) 7358–7365.
  14. R.C. Ong, T.-S. Chung, J.S. de Wit, B.J. Helmer, Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes, J. Membr. Sci., 473 (2015) 63–71.
  15. N. Ma, J. Wei, S. Qi, Y. Zhao, Y. Gao, C.Y. Tang, Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes, J. Membr. Sci., 441 (2013) 54–62.
  16. D.L. Shaffer, J.R. Werber, H. Jaramillo, S. Lin, M. Elimelech, Forward osmosis: where are we now?, Desalination, 356 (2015) 271–284.
  17. N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High performance thin-film composite forward osmosis membrane, Environ. Sci. Technol., 44 (2010) 3812–3818.
  18. S. Chou, L. Shi, R. Wang, C.Y. Tang, C. Qiu, A.G. Fane, Characteristics and potential applications of a novel forward osmosis hollow fiber membrane, Desalination, 261 (2010) 365–372.
  19. N. Widjojo, T.-S. Chung, M. Weber, C. Maletzko, V. Warzelhan, The role of sulphonated polymer and macrovoid-free structure in the support layer for thinfilm composite (TFC) forward osmosis (FO) membranes, J. Membr. Sci., 383 (2011) 214–223.
  20. A. Sagle, B. Freeman, Fundamentals of Membranes for Water Treatment, The Future of Desalination in Texas, Texas Water Development Board, Austin, TX, 2004, pp. 137–154.
  21. B. Mi, M. Elimelech, Chemical and physical aspects of organic fouling of forward osmosis membranes, J. Membr. Sci., 320 (2008) 292–302.
  22. D. Emadzadeh, W. Lau, T. Matsuura, A. Ismail, M. Rahbari- Sisakht, Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization, J. Membr. Sci., 449 (2014) 74–85.
  23. A. Nguyen, L. Zou, C. Priest, Evaluating the antifouling effects of silver nanoparticles regenerated by TiO2 on forward osmosis membrane, J. Membr. Sci., 454 (2014) 264–271.
  24. N. Niksefat,M. Jahanshahi, A. Rahimpour, The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application, Desalination, 343 (2014) 140–146.
  25. R. Wang, L. Shi, C.Y. Tang, S. Chou, C. Qiu, A.G. Fane, Characterization of novel forward osmosis hollow fiber membranes, J. Membr. Sci., 355 (2010) 158–167.
  26. A.B. Djurišcić, X.Y. Chen, Y.H. Lung, Recent progress in hydrothermal synthesis of zinc oxide nanomaterials, Recent Pat. Nanotechnol., 6 (2012) 124‒134.
  27. The International Centre for Diffraction Data (ICDD®) is a Non- Profit Scientific Organization Dedicated to Collecting, Editing, Publishing, and Distributing Powder Diffraction Data for the Identification of Materials, USA.
  28. M. Sairam, E. Sereewatthanawut, K. Li, A. Bismarck, A.G. Livingston, Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis— desalination using MgSO4 draw solution, Desalination, 273 (2011) 299–307.
  29. N. Srinivasa Rao, M.V. Basaveswara Rao, Structural and optical investigation of ZnO nanopowders synthesized from zinc chloride and zinc nitrate, Am. J. Mater. Sci., 5 (2015) 66–68.
  30. S. Ehsan, S. Mohtada, M.Toraj, Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes, J. Membr. Sci., 326 (2009) 627–634.
  31. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Springer Nature, Switzerland, 1997.
  32. C.C. Pereira, R. Nobrega, C.P. Borges, Membrane formation with presence of Lewis acid–base complexes in polymer solution, J. Appl. Polym. Sci., 83 (2002) 2022–2034.
  33. M. Mulder Pervaporation, Separation of Ethanol-Water and of Isomeric Xilenes, Ph.D. Thesis, University of Twente, Enschede, Netherlands, 1984.
  34. R.C. Binning, R.J. Lee, J.F. Jennings, E.C. Martin, Separation of liquid mixtures by permeation, Ind. Eng. Chem., 53 (1961) 45–50.
  35. P. Aptel, J. Cuny, J. Jozefonvicz, G. Morel, J. Weel, Liquid transport through membranes prepared by grafting of polar monomers onto poly(tetrafluoroethylene) films. II. Some factors determining pervaporation rate and selectivity, Appl. Polym. Sci., 18 (1974) 351–364.
  36. M.M. Cipriano, Pervaporation and Desidratation of Organic Solvents—Preparation of Porous Layers for Composite Membranes, M.S. Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal, 2001.
  37. R. Hong, T. Pan, J. Qian, H. Li, Synthesis and surface modification of ZnO nanoparticles, Chem. Eng. J., 119 (2006) 71–81.
  38. J. Garcia-Ivars, M. Iborra-Clar, M. Alcaina-Miranda, J. Mendoza-Roca, L. Pastor-Alcañiz, Development of fouling-resistant polyether sulfone ultrafiltration membranes via surface UV photografting with polyethylene glycol/aluminum oxide nanoparticles, Sep. Purif. Technol., 135 (2014) 88–99.
  39. A. Al-Hobaib, J. El Ghoul, L. El Mir, Fabrication of polyamide membrane reached by ZnO nanoparticles for ground water purification, Desal. Water Treat., 2015 (2015) 1–10.
  40. C. Liu, R. Bai, Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance, J. Membr. Sci., 267 (2005) 68–77.
  41. S. Waheed, A. Ahmad, S.M. Khan, S. Gul, T. Jamil, A. Islam, T. Hussain, Synthesis, characterization, permeation and antibacterial properties of cellulose acetate/polyethylene glycol membrane modified with chitosan, Desalination, 351 (2014) 59–69.
  42. A. Sonia, K. Priya Dasan, Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa, Carbohydr. Polym., 92 (2013) 668–674.
  43. M.K. Mohamad Haafiz, S.J. Eichhorn, A. Hassan, M. Jawaid, Isolation and characterization of microcrystalline cellulose from oil palm biomass residue, Carbohydr. Polym., 93 (2013) 628–634.
  44. Y. Yue, G. Han, Q. Wu, Transitional properties of cotton fibers from cellulose I to cellulose II structure, Bioresources, 8 (2013) 6460–6471.
  45. A.S. Abdel-Naby, A.A. Al-Ghamdi, Chemical modification of cellulose acetate by diallylamine, Int. J. Curr. Microbiol. Appl. Sci., 3 (2014) 10–24.
  46. Q. Li, Z. Xu, I. Pinnau, Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: role of membrane surface properties and initial permeate flux, J. Membr. Sci., 290 (2007) 173–181.
  47. J. Zheng, R. Ozisik, R.W. Siegel, Disruption of self-assembly and altered mechanical behavior in polyurethane/zinc oxide nanocomposites, Polymer, 46 (2005) 10873–10882.
  48. M.Z. Rong, M.Q. Zhang, H.B. Wang, H.M. Zeng, Surface modification of magnetic metal nanoparticals through irradiation graft polymerization, Appl. Surf. Sci., 200 (2002) 76–93.
  49. E. Tang, G. Cheng, X. Maa, X. Pang, Q. Zhao, Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system, Appl. Surf. Sci., 252 (2006) 5227–5523.
  50. H. Isawi, M.H. El-Sayed, X. Feng, H. Shawky, M.S. Abdel Mottaleb, Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles, Appl. Surf. Sci., 385 (2016) 268–281.
  51. S. Malladi, B. Mallikarjunagouda, S. Ravindra, A. Sangamesh, M.A. Tejfaj, Novel dense poly(vinyl alcohol)-TiO2 mixed matrix membranes for prevaporation separation of water-isopropanol mixtures at 30°C, J. Membr. Sci., 281 (2006) 95–102.
  52. R. Augustine, H.N. Malik, D.K. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal, S. Thomas, Electrospun poly caprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties, J. Polym. Res., 21 (2014) 347.
  53. M. Moniruzzaman, J. Chattopadhyay, W.E. Billups, K.I. Winey, Tuning the mechanical properties of SWNT/Nylon 6, 10 composites with flexible spacers at the interface, Nano Lett., 7 (2007) 1178–1185.
  54. A. Rahimpour, S.S. Madaeni, S. Mehdipour-Ataei, Synthesis of a novel poly(amideimide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes, J. Membr. Sci., 311 (2008) 349–359.
  55. A. Rahimpour, S.S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties, J. Membr. Sci., 305 (2007) 299–312.
  56. J.F. Li, Z.L. Xu, H. Yang, L.Y. Yu, M. Liu, Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane, Appl. Surf. Sci., 255 (2009) 4725–4732.