1. R. Loni, A.B. Kasaeian, O. Mahian, A.Z. Sahin, Thermodynamic analysis of an organic rankine cycle using a tubular solar cavity receiver, Energy Convers. Manage., 127 (2016) 494–503.
  2. O. Mahian, A. Kianifar, A.Z. Sahin, S. Wongwises, Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models, Int. J. Heat Mass Transfer, 78 (2014) 64–75.
  3. M.A. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Progress and latest developments of evacuated tube solar collectors, Renewable Sustainable Energy Rev., 51 (2015) 1038–1054.
  4. S. Dabiri, E. Khodabandeh, A.K. Poorfar, R. Mashayekhi, D. Toghraie, S.A.A. Zade, Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator, Energy, 153 (2018) 17–26.
  5. E. Khodabandeh, M.R. Safaei, S. Akbari, O.A. Akbari, A.A.A.A. Alrashed, Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study, Renewable Energy, 122 (2018) 1–16.
  6. I.S. Al-Mutaz, I. Wazeer, Development of a steady-state mathematical model for MEE-TVC desalination plants, Desalination, 351 (2014) 9–18.
  7. A. Baghernejad, M. Yaghoubi, Exergy analysis of an integrated solar combined cycle system, Renewable Energy, 35 (2010) 2157–2164.
  8. A. Baghernejad, M. Yaghoubi, K. Jafarpur, Exergoeconomic optimization and environmental analysis of a novel solartrigeneration system for heating, cooling and power production purpose, Sol. Energy, 134 (2016) 165–179.
  9. Y. Sanjay, O. Singh, B.N. Prasad, Energy and exergy analysis of steam cooled reheat gas-steam combined cycle, Appl. Therm. Eng., 27 (2007) 2779–2790.
  10. S. Ihm, O.Y. Al-Najdi, O.A. Hamed, G. Jun, H. Chung, Energy cost comparison between MSF, MED and SWRO: case studies for dual purpose plants, Desalination, 397 (2016) 116–125.
  11. N. Si, Z. Zhao, S. Su, P. Han, Z. Sun, J. Xu, X. Cui, S. Hu, Y. Wang, L. Jiang, Exergy analysis of a 1000 MW double reheat ultra-supercritical power plant, Energy Convers. Manage., 147 (2017) 155–165.
  12. A.A.A. Abuelnuor, K.M. Saqr, S.A.A. Mohieldein, K.A. Dafallah, M.M. Abdullah, Y.A.M. Nogoud, Exergy analysis of Garri “2” 180 MW combined cycle power plant, Renewable Sustainable Energy Rev., 79 (2017) 960–969.
  13. M.A. Lozano, A. Valero, Theory of the exergetic cost, Energy, 18 (1993) 939–960.
  14. B. Erlach, L. Serra, A. Valero, Structural theory as standard for thermoeconomics, Energy Convers. Manage., 40 (1999) 1627–1649.
  15. C.A. Frangopoulos, Thermo-economic functional analysis and optimization, Energy, 12 (1987) 563–571.
  16. C.A. Frangopoulos, Intelligent functional approach; A method for analysis and optimal synthesis-design-operation of complex systems, Int. J. Energy Environ. Econ., 1 (1991) 267–274.
  17. G. Tsatsaronis, L. Lin, J. Pisa, Exergy costing in exergoeconomics, J. Energy Resour. Technol., 115 (1993) 9–16.
  18. A. Lazzaretto, G. Tsatsaronis, SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems, Energy, 31 (2006) 1257–1289.
  19. M.R. Von Spakovsky, R.B. Evans, Engineering functional analysis—Part I, J. Energy Resour. Technol., 115 (1993) 86–92.
  20. M.R. Von Spakovsky, Application of engineering functional analysis to the analysis and optimization of the CGAM problem, Energy, 19 (1994) 343–364.
  21. M.A. Rosen, I. Dincer, Thermoeconomic analysis of power plants: an application to a coal fired electrical generating station, Energy Convers. Manage., 44 (2003) 2743–2761.
  22. T.J. Kotas, The Exergy Method of Thermal Plant Analysis, Butterworth-Heinemann Publishing, Elsevier, 2013.
  23. M. Ameri, P. Ahmadi, A. Hamidi, Energy, exergy and exergoeconomic analysis of a steam power plant: a case study, Int. J. Energy Res., 33 (2009) 499–512.
  24. M.A. Javadi, H. Ghomashi, Thermodynamics analysis and optimization of abadan combined cycle power plant, Indian J. Sci. Technol., 9 (2016) 60–72.
  25. A. Bejan, G. Tsatsaronis, M. Moran, M.J. Moran, Thermal Design and Optimization, Wiley-Interscience Publishing, John Wiley & Sons, 1996.
  26. P. Roosen, S. Uhlenbruck, K. Lucas, Pareto optimization of a combined cycle power system as a decision support tool for trading off investment vs. operating costs, Int. J. Therm. Sci., 42 (2003) 553–560.
  27. S.C. Kaushik, Y.P. Abhyankar, S. Bose, S. Mohan, Exergoeconomic evaluation of a solar thermal power plant, Int. J. Sol. Energy, 21 (2001) 293–314.
  28. M.A. Rosen, I. Dincer, Effect of varying dead-state properties on energy and exergy analyses of thermal systems, Int. J. Therm. Sci., 43 (2004) 121–133.
  29. O. Ozgener, A. Hepbasli, Exergoeconomic analysis of a solar assisted ground-source heat pump greenhouse heating system, Appl. Therm. Eng., 25 (2005) 1459–1471.
  30. M.A. Javadi, S. Hoseinzadeh, M. Khalaji, R. Ghasemiasl, Optimization and analysis of exergy, economic, and environmental of a combined cycle power plant, Sadhana – Acad. Proc. Eng. Sci., 44 (2019) 11–25.
  31. M. Kanoglu, I. Dincer, M.A. Rosen, Understanding energy and exergy efficiencies for improved energy management in power plants, Energy Policy, 35 (2007) 3967–3978.
  32. A.G. Kaviri, M.N.M. Jaafar, Thermodynamic modeling and exergy optimization of a gas turbine power plant, IEEE 3rd International Conference on Communication Software and Networks, Xi’an, China, 2011, pp. 366–370.
  33. P. Ahmadi, I. Dincer, Thermodynamic Analysis and Thermoeconomic Optimization of a Dual Pressure Combined Cycle Power Plant with a Supplementary Firing Unit, Energy Convers. Manage., 52 (2011) 2296–2308.
  34. M.A. Javadi, M.H. Ahmadi, M. Khalaji, Exergetic, economic, and environmental analyses of combined cooling and power plants with parabolic solar collector, Environ. Prog. Sustainable Energy, 39 (2019) 10–18.
  35. A. Valero, M.A. Lozano, L. Serra, G. Tsatsaronis, J. Pisa, C. Frangopoulos, M.R. von Spakovsky, CGAM problem: definition and conventional solution, Energy, 19 (1994) 279–286.
  36. J. Szargut, D.R. Morris, F.R. Steward, Exergy Analysis of Thermal, Chemical, and Metallurgical Processes, The University of Michigan, Hemisphere, 1987.
  37. P. Ahmadi, I. Dincer, Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA), Energy, 35 (2010) 5161–5172.
  38. M.A. Javadi, S. Hoseinzadeh, R. Ghasemiasl, P.S. Heyns, A.J. Chamkha, Sensitivity analysis of combined cycle parameters on exergy, economic, and environmental of a power plant, J. Therm. Anal. Calorim., (2019) 519–525, https://doi. org/10.1007/s10973-019-08399-y.
  39. H. Barzegar Avval, P. Ahmadi, A.R. Ghaffarizadeh, M.H. Saidi, Thermo-economic-environmental multiobjective optimization of a gas turbine power plant with preheater using evolutionary algorithm, Int. J. Energy Res., 35 (2011) 389–403.
  40. H. Kariman, S. Hoseinzadeh, S. Heyns, Energetic and exergetic analysis of evaporation desalination system integrated with mechanical vapor recompression circulation, Case Stud. Therm. Eng., 16 (2019) 100548.
  41. S. Adibhatla, S.C. Kaushik, Energy, exergy and economic (3E) analysis of integrated solar direct steam generation combined cycle power plant, Sustainable Energy Technol. Assess., 20 (2017) 88–97.
  42. S.E. Shakib, S.R. Hosseini, M. Amidpour, C. Aghanajafi, Multiobjective optimization of a cogeneration plant for supplying given amount of power and fresh water, Desalination, 286 (2012) 225–234.
  43. S.E. Shakib, M. Amidpour, C. Aghanajafi, Simulation and optimization of multi effect desalination coupled to a gas turbine plant with HRSG consideration, Desalination, 285 (2012) 366–376.