References

  1. P.K. Rai, J. Lee, S.K. Kailasa, E.E. Kwon, Y.F. Tsang, Y.S. Ok, K.-H. Kim, A critical review of ferrate(VI)-based remediation of soil and groundwater, Environ. Res., 160 (2018) 420–448.
  2. V.K. Sharma, L. Chen, R. Zboril, Review on high valent FeVI (Ferrate): a sustainable green oxidant in organic chemistry and transformation of pharmaceuticals, ACS Sustainable Chem. Eng., 4 (2016) 18–34.
  3. J.-Q. Jiang, Z. Zhou, V.K. Sharma, Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water — a review from global views, Microchem. J., 110 (2013) 292–300.
  4. J.-Q. Jiang, The role of ferrate(VI) in the remediation of emerging micro pollutants, Procedia Environ. Sci., 18 (2013) 418–426.
  5. M. Feng, X. Wang, J. Chen, R. Qu, Y. Sui, L. Cizmas, Z. Wang, V.K. Sharma, Degradation of fluoroquinolone antibiotics by ferrate(VI): effects of water constituents and oxidized products, Water Res., 103 (2016) 48–57.
  6. M.B. Feng, L.L. Cizmas, Z.Y. Wang, V.K. Sharma, Activation of ferrate(VI) by ammonia in oxidation of flumequine: kinetics, transformation products, and antibacterial activity assessment, Chem. Eng. J., 323 (2017) 584–591.
  7. C. Horst, V.K. Sharma, J. Clayton Baum, M. Sohn, Organic matter source discrimination by humic acid characterization: synchronous scan fluorescence spectroscopy and Ferrate(VI), Chemosphere, 90 (2013) 2013–2019.
  8. B. Yang, G.G. Ying, Z.F. Chen, J.L. Zhao, F.Q. Peng, X.W. Chen, Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A, Water Res., 62 (2014) 211–219.
  9. F.C. Zheng, Y.B. Liu, H.Y. Wang, The removal of oxytetracycline (OTC) by potassium ferrate (VI) in aquatic environment, Global NEST J., 18 (2016) 381–391.
  10. M.E. Parolo, M.J. Avena, G.R. Pettinari, M.T. Baschini, Influence of Ca2+ on tetracycline adsorption on montmorillonite, J. Colloid Surf. Sci., 368 (2012) 420–426.
  11. A. Cesaretti, B. Carlotti, C. Clementi, R. Germani, F. Elisei, Effect of micellar and sol–gel media on the spectral and kinetic properties of tetracycline and its complexes with Mg2+, Photochem. Photobiol. Sci., 13 (2014) 509–520.
  12. C.M. Su, D.L. Suarez, In situ infrared speciation of adsorbed carbonate on aluminum and iron oxides, Clays Clay Miner., 45 (1997) 814–825.
  13. L. Ma, W.W.Y. Lam, P.-K. Lo, K.-C. Lau, T.-C. Lau, Ca2+-induced oxygen generation by FeO42– at pH 9–10, Angew. Chem. Int. Ed., 55 (2016) 3012–3016.
  14. X.Z. Li, C.M. Fan, Y.P. Sun, Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength, Chemosphere, 48 (2002) 453–460.
  15. W. Yuan, A.L. Zydney, Humic acid fouling during ultrafiltration, Environ. Sci. Technol., 34 (2000) 5043–5050.
  16. C. Luo, M.B. Feng, V.K. Sharma, C.-H. Huang, Oxidation of pharmaceuticals by ferrate(VI) in hydrolyzed urine: effects of major inorganic constituents, Environ. Sci. Technol., 53 (2019) 5272–5281.
  17. M.B. Feng, C. Jinadatha, T.J. McDonald, V.K. Sharma, Accelerated oxidation of organic contaminants by ferrate(VI): the overlooked role of reducing additives, Environ. Sci. Technol., 52 (2018) 11319–11327.
  18. M. Ghosh, K. Manoli, J.B. Renaud, L. Sabourin, G. Nakhla, V.K. Sharma, A.K. Ray, Rapid removal of acesulfame potassium by acid-activated ferrate(VI) under mild alkaline conditions, Chemosphere, 230 (2019) 416–423.
  19. N.J. Graham, T.T. Khoi, J.-Q. Jiang, Oxidation and coagulation of humic substances by potassium ferrate, Water Sci. Technol., 62 (2010) 929–936.
  20. J.M. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci., 100–102 (2003) 475–502.
  21. J.E. Goodwill, Y.J. Jiang, D.A. Reckhow, J. Gikonyo, J.E. Tobiason, Characterization of particles from ferrate preoxidation, Environ. Sci. Technol., 49 (2015) 4955–4962.
  22. J. Filip, R.A. Yngard, K. Siskova, Z. Marusak, V. Ettler, P. Sajdl, V.K. Sharma, R. Zboril, Mechanisms and efficiency of the simultaneous removal of metals and cyanides by using ferrate(VI): crucial roles of nanocrystalline iron(III) oxyhydroxides and metal carbonates, Chem. Eur. J., 17 (2011) 10097–10105.
  23. P. Dobosy, C.É. Vizsolyi, I. Varga, J. Varga, G. Láng, G. Záray, Comparative study of ferrate and thermally activated persulfate treatments for removal of mono- and dichlorobenzenes from groundwater, Microchem. J., 136 (2016) 61–66.
  24. K. Manoli, G. Nakhla, A.K. Ray, V.K. Sharma, Enhanced oxidative transformation of organic contaminants by activation of ferrate(VI): possible involvement of FeV/FeIV species, Chem. Eng. J., 307 (2017) 513–517.
  25. K. Manoli, L.M. Morrison, M.W. Sumarah, G. Nakhla, A.K. Ray, V.K. Sharma, Pharmaceuticals and pesticides in secondary effluent wastewater: identification and enhanced removal by acid-activated ferrate(VI), Water Res., 148 (2019) 272–280.
  26. R.A. Reichle, K.G. McCurdy, L.G. Hepler, Zinc hydroxide: solubility product and hydroxy-complex stability constants from 12.5–75°C, Can. J. Chem., 53 (2011) 3841–3845.
  27. É.C. Vizsolyi, P. Dobosy, G.G. Láng, I. Varga, J. Varga, G. Záray, Laboratory scale study for remediation of polluted groundwater by ferrate treatment, Microchem. J., 133 (2017) 231–236.
  28. M. Cataldo-Hernández, M. Stewart, A. Bonakdarpour, M. Mohseni, D.P. Wilkinson, Degradation of ferrate species produced electrochemically for use in drinking water treatment applications, Can. J. Chem. Eng., 96 (2018) 1045–1052.