References

  1. J. Wu, T. Xu, X.Y. Jiang, G. Yan, L.T. Yu, Model based optimization of partial nitrification by monitoring nitrous oxide (N2O) emission, J. Environ. Chem. Eng., 3 (2015) 1602–1613.
  2. P. Klangduen, K. Jürg, Study of factors affecting simultaneous nitrification and denitrification (SND), Water Sci. Technol., 39 (1999) 61–68.
  3. J.L. Chen, Y.B. Xu, Y.X. Li, J.S. Liao, J.Y. Ling, J.Y. Li, G.Y. Xie, Effective removal of nitrate by denitrification re-enforced with a two-stage anoxic/oxic (A/O) process from a digested piggery wastewater with a low C/N ratio, J. Environ. Manage., 240 (2019) 19–26.
  4. J.T. Ji, Y.Z. Peng, W.K. Mai, J.Z. He, B. Wang, X.Y. Li, Q. Zhang, Achieving advanced nitrogen removal from low C/N wastewater by combining endogenous partial denitrification with anammox in mainstream treatment, Bioresour. Technol., 270 (2018) 570–579.
  5. Y.H. Liang, D. Li, X.J. Zhang, H.P. Zeng, Z. Yang, S.M. Cui, J. Zhang, Stability and nitrite-oxidizing bacteria community structure in different high-rate CANON reactors, Bioresour. Technol., 175 (2015) 189–194.
  6. J. Pérez, T. Lotti, R. Kleerebezem, C. Picioreanu, M.C.M. Van Loosdrecht, Outcompeting nitrite-oxidizing bacteria in singlestage nitrogen removal in sewage treatment plants: a modelbased study, Water Res., 66 (2014) 208–218.
  7. X.L. Li, J. Zhang, X.Y. Zhang, J. Li, F.C. Liu, Y.M. Chen, Start-up and nitrogen removal performance of CANON and SNAD processes in a pilot-scale oxidation ditch reactor, Process Biochem., 84 (2019) 134–142.
  8. X. Yue, G.P. Yu, Y.Q. Lu, Z.H. Liu, Q.H. Li, J.L. Tang, J. Liu, Effect of dissolved oxygen on nitrogen removal and the microbial community of the completely autotrophic nitrogen removal over nitrite process in a submerged aerated biological filter, Bioresour. Technol., 254 (2018) 67–74.
  9. W.G. Wang, Y.Y. Wang, X.D. Wang, Y. Zhang, Y. Yan, Dissolved oxygen microelectrode measurements to develop a more sophisticated intermittent aeration regime control strategy for biofilm-based CANON systems, Chem. Eng. J., 365 (2019) 165–174.
  10. M. Strous, J.J. Heijnen, J.G. Kuenen, M.S.M. Jetten, The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Appl. Microbiol. Biotechnol., 50 (1998) 589–596.
  11. Y. Tao, D.W. Gao, Y. Fu, W.M. Wu, N.Q. Ren, Impact of reactor configuration on anammox process start-up: MBR versus SBR, Bioresour. Technol., 104 (2012) 73–80.
  12. T. Wang, H.M. Zhang, D.W. Gao, F.L. Yang, G.Y. Zhang, Comparison between MBR and SBR on Anammox start-up process from the conventional activated sludge, Bioresour. Technol., 122 (2012) 78–82.
  13. T.L.G. Hendrickx, C. Kampman, G. Zeeman, H. Temmink, Z. Hu, B. Kartal, C.J.N. Buisman, High specific activity for anammox bacteria enriched from activated sludge at 10°C, Bioresour. Technol., 163 (2014) 214–221.
  14. H.H. Chen, S.T. Liu, F.L. Yang, Y. Xue, T. Wang, The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal, Bioresour. Technol., 100 (2009) 1548–1554.
  15. G. Anjali, P.C. Sabumon, Development of simultaneous partial nitrification, anammox and denitrification (SNAD) in a non-aerated SBR, Int. Biodeterior. Biodegrad., 119 (2017) 43–55.
  16. F.Z. Zhang, Y.Z. Peng, L. Miao, Z. Wang, S.Y. Wang, B.K. Li, A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for costeffective nitrogen removal from mature landfill leachate, Chem. Eng. J., 313 (2017) 619–628.
  17. G. Wang, X.C. Xu, Z. Gong, F. Gao, F.L. Yang, H.M. Zhang, Study of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in an intermittent aeration membrane bioreactor, Process Biochem., 51 (2016) 632–641.
  18. C.Q. Zhao, G. Wang, X.C. Xu, Y.S. Yang, F.L. Yang, Long-term operation of oxygen-limiting membrane bioreactor (MBR) for the development of simultaneous partial nitrification, anammox and denitrification (SNAD) process, Environ. Technol., 39 (2018) 2193–2202.
  19. APHA-American Public Health Association, AWWAAmerican Water Works Association, WEF-Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 21st ed., Washington DC, USA, 2005.
  20. A. Laguna, A. Ouattara, R.O. Gonzalez, O. Baron, G. Famá, R.E. Mamouni, S. Guiot, O. Monroy, H. Macarie, A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge, Water Sci. Technol., 40 (1999) 1–8.
  21. C.J. Tang, P. Zheng, Q. Mahmood, J.W. Chen, Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge, J. Ind. Microbiol. Biotechnol., 36 (2009) 1093–1100.
  22. Z.M. Zheng, J. Li, J. Ma, J. Du, W. Bian, Y. Li, Y.Z. Zhang, B.H. Zhao, Nitrogen removal via simultaneous partial nitrification, anammox and denitrification (SNAD) process under high DO condition, Biodegradation, 27 (2016) 195–208.
  23. F. Fang, M.M. Yang, H. Wang, P. Yan, Y.P. Chen, J.S. Guo, Effect of high salinity in wastewater on surface properties of anammox granular sludge, Chemosphere, 210 (2018) 366–375.
  24. J. Wu, H.M. Zhou, H.Z. Li, P.C. Zhang, J. Jiang, Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor, Water Res., 43 (2009) 3029–3036.
  25. D. Seuntjens, J.M. Carvajal-Arroyo, M. Ruopp, P. Bunse, C.P. De Mulder, S. Lochmatter, S. Agrawal, N. Boon, S. Lackner, S.E. Vlaeminck, High-resolution mapping and modeling of anammox recovery from recurrent oxygen exposure, Water Res., 144 (2018) 522–531.
  26. L.H. Ye, D. Li, J. Zhang, H.P. Zeng, Resuscitation of starved anaerobic ammonium oxidation sludge system: impacts of repeated short-term starvation, Bioresour. Technol., 263 (2018) 458–466.
  27. J.R. Vázquez-Padín, M.J. Pozo, M. Jarpa, M. Figueroa, A. Franco, A. Mosquera-Corral, J.L. Campos, R. Méndeza, Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR, J. Hazard. Mater., 166 (2009) 336–341.
  28. E.I.P. Volcke, C. Picioreanu, B. De Baets, M.C.M. van Loosdrecht, Effect of granule size on autotrophic nitrogen removal in a granular sludge reactor, Environ. Technol., 31 (2010) 1271–1280.
  29. M.K.H. Winkler, J.J. Yang, R. Kleerebezem, E. Plaza, J. Trela, B. Hultman, M.C.M. van Loosdrechta, Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor, Bioresour. Technol., 114 (2012) 217–223.
  30. J.R. Vázquez-Padín, I. Fernández, N. Morales, J.L. Campos, A. Mosquera-Corral, R. Méndez, Autotrophic nitrogen removal at low temperature, Water Sci. Technol., 63 (2011) 1282–1288.
  31. Y.Y. Miao, Y.Z. Peng, L. Zhang, B.K. Li, X.Y. Li, L. Wu, S.M. Wang, Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: effect of influent C/N ratios, Chem. Eng. J., 334 (2018) 664–672.
  32. C.J. Tang, P. Zheng, C.H. Wang, Q. Mahmood, Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor, Bioresour. Technol., 101 (2010) 1762–1768.
  33. S.Q. Ni, J.Y. Ni, D.L. Hu, S. Sung, Effect of organic matter on the performance of granular anammox process, Bioresour. Technol., 110 (2012) 701–705.
  34. Y. Satyawali, M. Balakrishnan, Effect of PAC addition on sludge properties in a MBR treating high strength wastewater, Water Res., 43 (2009) 1577–1588.
  35. U. Manonmani, K. Joseph, Granulation of anammox microorganisms for autotrophic nitrogen removal from wastewater, Environ. Chem. Lett., 16 (2018) 881–901.
  36. F.Y. Qian, J.F. Wang, Y.L. Shen, Y. Wang, S.Y. Wang, X. Chen, Achieving high performance completely autotrophic nitrogen removal in a continuous granular sludge reactor, Biochem. Eng. J., 118 (2017) 97–104.
  37. B.L. Li, Y. Wang, J.T. Li, L. Yang, X. Li, Z. Zhou, Y. Li, X.G. Chen, L. Wu, The symbiosis of anaerobic ammonium oxidation bacteria and heterotrophic denitrification bacteria in a size-fractioned single-stage partial nitrification/anammox reactor, Biochem. Eng. J., 151 (2019) 1–9.
  38. X.L. Ho, S.T. Liu, Z.T. Zhang, Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge, Water Res.,75 (2015) 51–62.
  39. S.Q. Ni, N. Sun, H.L. Yang, J. Zhang, H.H. Ngo, Distribution of extracellular polymeric substances in anammox granules and their important roles during anammox granulation, Biochem. Eng. J., 101 (2015) 126–133.
  40. S.Q. Ni, A. Fessehaie, P.H. Lee, B.Y. Gao, X. Xu, S. Sung, Interaction of anammox bacteria and inactive methanogenic granules under high nitrogen selective pressure, Bioresour. Technol., 101 (2010) 6910–6915.
  41. L.L. Zhang, X.X. Feng, N.W. Zhu, J.M. Chen, Role of extracellular protein in the for mation and stability of aerobic granules, Enzyme Microb. Technol., 41 (2007) 551–557.
  42. F.A. Tassew, W.H. Bergland, C. Dinamarca, R. Bakke, Settling velocity and size distribution measurement of anaerobic granular sludge using microscopic image analysis, J. Microbiol. Methods, 159 (2019) 81–90.
  43. S. Deng, L.X. Wang, H.J. Su, Role and influence of extracellular polymeric substances on the preparation of aerobic granular sludge, J. Environ. Manage., 173 (2016) 49–54.
  44. K.M. Wang, A. Soares, B. Jefferson, E.J. McAdam, Comparable membrane permeability can be achieved in granular and flocculent anaerobic membrane bioreactor for sewage treatment through better sludge blanket control, J. Water Process Eng., 28 (2019) 181–189.
  45. X. Tu, S. Zhang, L.R. Xu, M.C. Zhang, J.R. Zhu, Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge, Desalination, 261 (2010) 191–196.
  46. J.P. Croué, M.F. Benedetti, D. Violleau, J.A. Leenheer, Characterization and copper binding of humic and nonhumic organic matter isolated from South Platte River: evidence for the presence of nitrogenous binding site, Environ. Sci. Technol., 37 (2003) 328–336.
  47. M. Kumar, S.S. Adham, W.R. Pearce, Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type, Environ. Sci. Technol., 40 (2006) 2037–2044.