1. J. Smit, H.P.J. Wijn, Ferrites, Philips Technical Library, Eindhoven, The Netherlands, 1959.
  2. B. Pacakova, S. Kubickova, A. Reznickova, D. Niznansky, J. Vejpravova, Spinel Ferrite Nanoparticles: Correlation of Structure and Magnetism, Magnetic Spinels - Synthesis, Properties and Applications, IntechOpen, 2017. Available at: https:// of-structure-and-magnetism (accessed 21 October 2019).
  3. M.A. Iqbel, M.U. Islam, I. Ali, M.A. Khan, I. Sadiq, I. Ali, High frequency dielectric properties of Eu3+-substituted Li–Mg ferrites synthesized by sol–gel auto-combustion method, J. Alloys Compd., 586 (2014) 404–410.
  4. A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth Charact. Mater., 55 (2009) 22–45.
  5. C.N.R. Rao, H.C. Mult, A. Müller, A.K. Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications, Wiley-VCH, Weinheim, Germany, 2004.
  6. A.K. Haghi, A.K. Zachariah, N. Kalarikkal, Nanomaterials Synthesis, Characterization, and Applications, S. Thomas, M. Sebastien, A. George, Y. Weimin, Eds., Advances in Nanoscience and Nanotechnology, Vol. 3, Apple Academic Press, New Jersey, USA, 2013.
  7. A. Roy, J. Bhattacharya, Nanotechnology in Industrial Wastewater Treatment, IWA Publishing, London, 2015.
  8. S. Kanagesan, M. Hashim, A.B. Aziz, I. Ismail, S. Tamilselvan, N.B. Alitheen, M.K. Swamy, B.P.C. Rao, Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel selfcombustion method, Appl. Sci., 6 (2016) 184–196.
  9. B.I. Kharisov, H.V.R. Dias, O.V. Kharissova, Mini-review: ferrite nanoparticles in the catalysis, Arabian J. Chem., 12 (2019) 1234–1246.
  10. A.M. Gutierrez, T.D. Dziubla, J.Z. Hilt, Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment, Rev. Environ. Health, 32 (2017) 111–117.
  11. M.A.A. Eldeen, A.A.M.E. Sayed, D.M.S.A. Salem, G.M.E. Zokm, The uptake of Eriochrome Black T dye from aqueous solutions utilizing waste activated sludge: adsorption process optimization using factorial design, Egypt. J. of Aquat. Res., 44 (2018) 179–186.
  12. K.R. Kunduru, M. Nazarkovsky, S. Farah, R.P. Pawar, A. Basu, S. Pawar, A.J. Domb, Nanotechnology for Water Purification: Applications of Nanotechnology Methods in Wastewater Treatment, M.G. Alexandru, Ed., Water Purification Nanotechnology in the Agri-Food Industry, Academic Press, Cambridge, 2017, pp. 33–74.
  13. P. Sukanchan, Application of Nanotechnology in Water Treatment, Wastewater Treatment and Other Domains of Environmental Engineering Science–A Broad Scientific Perspective and Critical Review, A.K. Mishra, C.M. Hussain, Eds., Nanotechnology for Sustainable Water Resources, Scrivener Publishing LLC, Beverly, USA, 2018, pp. 1–39.
  14. A. Figoli, M.S.S. Dorraji, A.R.A. Ghadim, Application of Nanotechnology in Drinking Water Purification, M.G. Alexandru, Ed., Water Purification, Academic Press, New Jersey, USA, 2017, pp. 119–167.
  15. D.H.K. Reddy, Y.S. Yun, Spinel ferrite magnetic adsorbents: alternative future materials for water purification, Coord. Chem. Rev., 315 (2016) 90–111.
  16. E.K. Aziz, R. Abdelmajid, L.M. Rachid, E.H. Mohammadine, Adsorptive removal of anionic dye from aqueous solutions using powdered and calcined vegetables wastes as low-cost adsorbent, Arabian J. Basic Appl. Sci., 25 (2018) 93–102.
  17. G. Sriram, U.T. Uthapp, R.M. Rego, M. Kigga, T. Kumeria, H.Y. Jung, M.D. Kurkuri, Ceria decorated porous diatomxerogel as an effective adsorbent for the efficient removal of Eriochrome Black T, Chemosphere, 238 (2020) 124692.
  18. G. Sriram, M.P. Bhat, M. Kigga, U.T. Uthappa, H.Y. Jung, T. Kumeria, M.D. Kurkuri, Amine activated diatom xerogel hybrid material for efficient removal of hazardous dye, Mater. Chem. Phys., 235 (2019) 121738.
  19. M. Farid, A. Asma, K. Maryam, Efficient removal of Eriochrome Black T from aqueous solution using NiFe2O4 magnetic nanoparticles, J. Environ. Health Sci. Eng., 12 (2014) 1–7.
  20. D.M.M. Aguila, M.V. Ligaray, Adsorption of Eriochrome Black T on MnO2-coated zeolite, Int. J. Environ. Sci. Dev., 6 (2015) 824–827.
  21. M. Ahmaruzzamana, M.J.K. Ahmed, S. Begum, Remediation of Eriochrome Black T-contaminated aqueous solutions utilizing H3PO4-modified berry leaves as a non-conventional adsorbent, Desal. Water Treat., 56 (2015) 1–13.
  22. O.A. Attallah, M.A. Al-Ghobashy, M. Nebsen, M.Y. Salem, Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnetite/silica/pectin hybrid nanocomposites: kinetic, isotherm and mechanism analysis, RSC Adv., 6 (2016) 11461–11480.
  23. B. Saha, S. Das, J. Saikia, G. Das, Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: a comparative study, J. Phys. Chem. C, 115 (2011) 8024–8033.
  24. L.B. Tahar, M.H. Oueslati, M.J.A. Abualreish. Synthesis of magnetite derivatives nanoparticles and their application for the removal of chromium(VI) from aqueous solutions, J. Colloid Interface Sci., 512 (2018) 115–126.
  25. D. Zins, V. Cabuil, R. Massart, New aqueous magnetic fluids, J. Mol. Liq., 83 (1999) 217–232.
  26. X’Pert HighScore Plus V2, PANAlytical, P.V, Almelo, The Netherlands, 2003.
  27. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 11 (1978) 102–113.
  28. S.A. Albuquerque, J.D. Ardisson, W.A.A. Macedo, Nanosized powders of NiZn ferrite: synthesis, structure, and magnetism, J. Appl. Phys., 87 (2000) 4352–4357.
  29. H. Huili, B. Grindi, G. Viau, L.B. Tahar, Effect of cobalt substitution on the structure, electrical, and magnetic properties of nanorcrystalline Ni0.5Zn0.5Fe2O4 prepared by the polyol process, Ceram. Int., 40 (2014) 16235–16244.
  30. R. Kato, J. Rolfe, Vibration frequencies of NO2 and NO3 ions in KBr crystals, J. Chem. Phys., 47 (1967) 901–1910.
  31. R.M. Cornell, U. Schwertmann, The Iron Oxides, 2nd ed., VCH, Weimheim, 2003.
  32. M. Kosmulski, pH-dependent surface charging and points of zero charge II. Update, J Colloid Interface Sci., 275 (2004) 214–224.
  33. M.P. Pileni, Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals, Adv. Funct. Mater., 11 (2001) 323–336.
  34. A. Demortière, P. Panissod, B.P. Pichon, G. Pourroy, D. Guillon, B. Donnio, S.B. Colin, Size-dependent properties of magnetic iron oxide nanocrystals, Nanoscale, 3 (2011) 225–232.
  35. M. Artus, L.B. Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub, J.M. Grenèche, S. Ammar, F. Fiévet, Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol, J. Phys. Condens. Matter, 23 (2011) 506001 (9pp).
  36. J.Z. Zhang, Z.L. Wang, B.C. Chakoumakos, J.S. Yin, Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals, J. Am. Chem. Soc., 120 (1998) 1800–1804.
  37. D. Ortega, E.V. Fort, D.A. Garcia, R. Garcia, R. Litrán, C. Barrera- Solano, M.R. del-Solar, M. Domínguez, Size and surface effects in the magnetic properties of maghemite and magnetite coated nanoparticles, Philos. Trans. R. Soc. London, Ser. A, 368 (2010) 4407–4418.
  38. M.A. Gilleo, Superexchange interaction in ferrimagnetic garnets and spinels which contain randomly incomplete linkages, J. Phys.Chem. Solids, 13 (1960) 33–39.
  39. R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, H. Huang, Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon, Ind. Eng. Chem. Res., 52 (2013) 14297–14303.
  40. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem, 34 (1999) 451–465.
  41. M.D.G. De Luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan, M.W. Wan, Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls-optimization, isotherm and kinetic studies, J. Taiwan Inst. Chem. Eng., 44 (2013) 646–653.