References
  -  P. González-García, Activated carbon from lignocellulosics
    precursors: a review of the synthesis methods, characterization
    techniques and applications, Renewable Sustainable Energy
    Rev., 82 (2018) 1393–1414. 
-  R. Tobi Ayinla, J.O. Dennis, H.M. Zaid, Y.K. Sanusi, F. Usman,
    L.L. Adebayo, A review of technical advances of recent palm
    bio-waste conversion to activated carbon for energy storage,
    J. Cleaner Prod., 229 (2019) 1427–1442. 
-  S. Hajati, M. Ghaedi, S. Yaghoubi, Local, cheep and nontoxic
    activated carbon as efficient adsorbent for the simultaneous
    removal of cadmium ions and malachite green: optimization
    by surface response methodology, J. Ind. Eng. Chem., 21 (2015)
    760–767. 
-  N. Saman, A. Abdul Aziz, K. Johari, S.-T. Song, H. Mat, Adsorptive
    efficacy analysis of lignocellulosic waste carbonaceous
    adsorbents toward different, Process Saf. Environ. Prot.,
    96 (2015) 33–42. 
-  M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati, M.K. Purkait,
    Application of central composite design for simultaneous
	  removal of methylene blue and Pb2+ ions by walnut wood
  activated carbon, Spectrochim. Acta, Part A, 135 (2015) 479–490. 
-  S. Sangon, A.J. Hunt, T.M. Attard, P. Mengchang, Y. Ngernyen,
    N. Supanchaiyamat, Valorisation of waste rice straw for the
    production of highly effective carbon based adsorbents for dyes
    removal, J. Cleaner Prod., 172 (2018) 1128–1139. 
-  A.P. de Oliveira, A.N. Módenes, M.E. Bragião, C.L. Hinterholz,
    D.E.G. Trigueros, I.G. de O. Bezerra, Use of grape pomace as
    a biosorbent for the removal of the Brown KROM KGT dye,
    Bioresour. Technol. Rep., 2 (2018) 92–99. 
-  S.K. Low, M.C. Tan, Dye adsorption characteristic of ultrasound
    pre-treated pomelo peel, J. Environ. Chem. Eng., 6 (2018)
    3502–3509. 
-  H.T. Van, L.H. Nguyen, V.D. Nguyen, X.H. Nguyen,
    T.H. Nguyen, T.V. Nguyen, S. Vigneswaran, J. Rinklebe,
    H.N. Tran, Characteristics and mechanisms of cadmium adsorption
    onto biogenic aragonite shells-derived biosorbent: batch
    and column studies, J. Environ. Manage., 241 (2019) 535–548. 
-  A. Khasri, O.S. Bello, M.A. Ahmad, Mesoporous activated
    carbon from Pentace species sawdust via microwave-induced
    KOH activation: optimization and methylene blue adsorption,
    Res. Chem. Intermed., 44 (2018) 5737–5757. 
-  N.A. Rashidi, S. Yusup, A review on recent technological
    advancement in the activated carbon production from oil palm
    wastes, Chem. Eng. J., 314 (2017) 277–290. 
-  A. Pandiarajan, R. Kamaraj, S. Vasudevan, S. Vasudevan,
    OPAC (orange peel activated carbon) derived from waste
    orange peel for the adsorption of chlorophenoxyacetic acid
    herbicides from water: adsorption isotherm, kinetic modelling
    and thermodynamic studies, Bioresour. Technol., 261 (2018)
    329–341. 
-  K. Sartova, E. Omurzak, G. Kambarova, I. Dzhumaev,
    B. Borkoev, Activated carbon obtained from the cotton processing
    wastes, Diamond Relat. Mater., 91 (2019) 90–97. 
-  D.Q. Tian, Z.H. Xu, D.F. Zhang, W.F. Chen, J.L. Cai, H.X. Deng,
    Z.H. Sun, Y.W. Zhou, Micro–mesoporous carbon from cotton
    waste activated by FeCl3/ZnCl2: preparation, optimization,
    characterization and adsorption of methylene blue and
    eriochrome black T, J. Solid State Chem., 269 (2019) 580–587. 
-  IMARC Group, Biomass Gasification Market: Global Industry
    Trends, Share, Size, Growth, Opportunity and Forecast 2018–
    2023, IMARC Group, United States, 2017. 
-  V. Benedetti, F. Patuzzi, M. Baratieri, Characterization of char
    from biomass gasification and its similarities with activated
    carbon in adsorption applications, Appl. Energy, 227 (2018)
    92–99. 
-  M. Galhetas, A.S. Mestre, M.L. Pinto, I. Gulyurtlu, H. Lopes,
    A.P. Carvalho, Chars from gasification of coal and pine
	  activated with K2CO3: Acetaminophen and caffeine adsorption
    from aqueous solutions, J. Colloid Interface Sci., 433 (2014)
  2014. 
-  T. Maneerung, J. Liew, Y.J. Dai, S. Kawi, C. Chong, C.-H. Wang,
    Activated carbon derived from carbon residue from biomass
    gasification and its application for dye adsorption: kinetics,
    isotherms and thermodynamic studies, Bioresour. Technol.,
    200 (2016) 350–359. 
-  S.J. Culp, F.A. Beland, Malachite green: a toxicological review,
    J. Am. Coll. Toxicol., 15 (1996) 219–238. 
-  P.P. Kwan, S. Banerjee, M. Shariff, N.A.S. Ishak, F.M. Yusoff,
    Quantitative analysis of malachite green and leucomalachite
    green residues in fish purchased from the markets in Malaysia,
    Food Control, 92 (2018) 101–106. 
-  S.N. Jain, P.R. Gogate, Efficient removal of Acid Green 25 dye
    from wastewater using activated Prunus Dulcis as biosorbent:
    batch and column studies, J. Environ. Manage., 210 (2018)
    226–238. 
-  M. de la Luz-Asunción, E.E. Pérez-Ramírez, A.L. Martínez-Hernández, V.M. Castano, V. Sánchez-Mendieta, C. Velasco-Santos, Non-linear modeling of kinetic and equilibrium
    data for the adsorption of hexavalent chromium by carbon
    nanomaterials: dimension and functionalization, Chin. J.
    Chem. Eng., 27 (2019) 912–919. 
-  M.-H. To, P. Hadi, C.-W. Hui, C.S.K. Lin, G. McKay, Mechanistic
    study of atenolol, acebutolol and carbamazepine adsorption on
    waste biomass derived activated carbon, J. Mol. Liq., 241 (2017)
    386–398. 
-  N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation
    of adsorption isotherms, J. Chem., 2017 (2017) 1–11. 
-  M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Water remediation using
    low cost adsorbent walnut shell for removal of malachite green:
    equilibrium, kinetics, thermodynamic and regeneration studies,
    J. Environ. Chem. Eng., 2 (2014) 1434–1444. 
-  K.C. Nebaghe, Y. El Boundati, K. Ziat, A. Naji, L. Rghioui,
    M. Saidi, Comparison of linear and non-linear method for
    determination of optimum equilibrium isotherm for adsorption
    of copper(II) onto treated Martil sand, Fluid Phase Equilib.,
    430 (2016) 188–194. 
-  L.C. Zheng, Y.B. Yang, P.P. Meng, D. Peng, Absorption
    of cadmium (II) via sulfur-chelating based cellulose:
    characterization, isotherm models and their error analysis,
    Carbohydr. Polym., 209 (2019) 38–50. 
-  F. Gritti, G. Guiochon, New thermodynamically consistent
    competitive adsorption isotherm in RPLC, J. Colloid Interface
    Sci., 264 (2003) 43–59. 
-  M. Wakkel, B. Khiari, F. Zagrouba, Textile wastewater
    treatment by agro-industrial waste: equilibrium modelling,
    thermodynamics and mass transfer mechanisms of cationic
    dyes adsorption onto low-cost lignocellulosic adsorbent,
    J. Taiwan Inst. Chem. Eng., 96 (2019) 439–452. 
-  A.K. Nayak, A. Pal, Development and validation of an
    adsorption kinetic model at solid-liquid interface using
    normalized Gudermannian function, J. Mol. Liq., 276 (2019)
    67–77. 
-  J.O. Babalola, B.A. Koiki, Y. Eniayewu, A. Salimonu, J.O. Olowoyo,
    V.O. Oninla, H.A. Alabi, A.E. Ofomaja, M.O. Omorogie,
    Adsorption efficacy of Cedrela odorata seed waste for dyes:
    non linear fractal kinetics and non linear equilibrium studies,
    J. Environ. Chem. Eng., 4 (2016) 3527–3536. 
-  S. Batra, D. Datta, N.S. Beesabathuni, N. Kanjolia, S. Saha,
    Adsorption of bisphenol-A from aqueous solution using
    amberlite XAD-7 impregnated with aliquat 336: batch, column,
    and design studies, Process Saf. Environ. Prot., 122 (2019)
    232–246. 
-  A. Syafiuddin, S. Salmiati, J. Jonbi, M.A. Fulazzaky, Application
    of the kinetic and isotherm models for better understanding of
    the behaviors of silver nanoparticles adsorption onto different
    adsorbents, J. Environ. Manage., 218 (2018) 59–70. 
-  M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Application of Casuarina
    equisetifolia needle for the removal of methylene blue and
    malachite green dyes from aqueous solution, Alexandria Eng.
    J., 54 (2015) 1253–1263. 
-  P. Saha, S. Chowdhury, Insight Into Adsorption
    Thermodynamics, in: Thermodynamics, InTech Europe, 2011,
    pp. 349–364. 
-  A. Ebadi, J.S. Soltan Mohammadzadeh, A. Khudiev, What is
    the correct form of BET isotherm for modeling liquid phase
    adsorption?, Adsorption, 15 (2009) 65–73. 
-  W.Y. Qu, T. Yuan, G.J. Yin, S. Xu, Q. Zhang, H.J. Su, Effect of
    properties of activated carbon on malachite green adsorption,
    Fuel, 249 (2019) 45–53. 
-  E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján,
    I. Anastopoulos, A critical review of the estimation of the
    thermodynamic parameters on adsorption equilibria. Wrong
    use of equilibrium constant in the Van’t Hoof equation for
    calculation of thermodynamic parameters of adsorption, J. Mol.
    Liq., 273 (2019) 425–434. 
-  Y. Liu, Is the free energy change of adsorption correctly
    calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985. 
-  L. Lonappan, T. Rouissi, Y. Liu, S.K. Brar, R.Y. Surampalli,
    Removal of diclofenac using microbiochar fixed-bed column
    bioreactor, J. Environ. Chem. Eng., 7 (2019) 102894. 
-  J. Jang, D.S. Lee, Effective phosphorus removal using chitosan/Ca-organically modified montmorillonite beads in batch and
    fixed-bed column studies, J. Hazard. Mater., 375 (2019) 9–18. 
-  M.A. Ahmad, R. Alrozi, Optimization of preparation conditions
    for mangosteen peel-based activated carbons for the removal of
    Remazol Brilliant Blue R using response surface methodology,
    Chem. Eng. J., 165 (2010) 883–890. 
-  I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Optimization of
    preparation conditions for activated carbons from coconut husk
    using response surface methodology, Chem. Eng. J., 137 (2008)
    462–470. 
-  T. Yang, A.C. Lua, Characteristics of activated carbons prepared
    from pistachio-nut shells by physical activation, J. Colloid
    Interface Sci., 267 (2003) 408–417. 
-  R.K. Liew, E. Azwar, P.N.Y. Yek, X.Y. Lim, C.K. Cheng,
    J.-H. Ng, A. Jusoh, W.H. Lam, M.D. Ibrahim, N.L. Ma, S.S. Lam,
    Microwave pyrolysis with KOH/NaOH mixture activation: a
    new approach to produce micro-mesoporous activated carbon
    for textile dye adsorption, Bioresour. Technol., 266 (2018) 1–10. 
-  S.S. Lam, R.K. Liew, Y.M. Wong, E. Azwar, A. Jusoh, R. Wahi,
    Activated carbon for catalyst support from microwave pyrolysis
    of orange peel, Waste Biomass Valorization, 8 (2017) 2109–2119. 
-  M.A. Ahmad, N.S. Afandi, O.S. Bello, Optimization of process
    variables by response surface methodology for malachite green
    dye removal using lime peel activated carbon, Appl. Water Sci.,
    7 (2015) 717–727. 
-  M. Makeswari, T. Santhi, Removal of malachite green dye
    from aqueous solutions onto microwave assisted zinc chloride
    chemical activated epicarp of Ricinus communis, J. Water Resour.
    Prot., 5 (2013) 222–238. 
-  A.A.A. Zuki, M. Awang, A.A. Mahmud, M.H. Zain, J.J. Jaafar,
    Adsorption of malachite green dye on microwave and
    chemically treated Casuarina equisetifolia seeds as an eco-friendly
    adsorbent, Adv. Environ. Biol., 9 (2015) 216–223. 
-  S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma,
    C.L. Lee, H.A. Chase, Microwave-assisted pyrolysis with
    chemical activation, an innovative method to convert orange
    peel into activated carbon with improved properties as dye
    adsorbent, J. Cleaner Prod., 162 (2017) 1376–1387. 
-  K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti,
    J. Rouquérol, T. Siemieniewska, Reporting physisorption data
    for gas/solid systems with special reference to the determination
    of surface area and porosity, Pure Appl. Chem., 57 (1985)
    603–619. 
-  A.E. Ogungbenro, D.V. Quang, K.A. Al-Ali, L.F. Vega, M.R.M.
    Abu-Zahra, Physical synthesis and characterization of activated
	  carbon from date seeds for CO2 capture, J. Environ. Chem. Eng.,
  6 (2018) 4245–4252. 
-  J.-X. Yang, G.-B. Hong, Adsorption behavior of modified
    Glossogyne tenuifolia leaves as a potential biosorbent for the
    removal of dyes, J. Mol. Liq., 252 (2018) 289–295. 
-  K.Y. Foo, B.H. Hameed, Porous structure and adsorptive
    properties of pineapple peel based activated carbons prepared
    via microwave assisted KOH and K2CO3 activation,
  Microporous Mesoporous Mater., 148 (2012) 191–195. 
-  K.Y. Foo, B.H. Hameed, Preparation and characterization of
    activated carbon from sunflower seed oil residue via microwave
    assisted K2CO3 activation, Bioresour. Technol., 102 (2011)
  9794–9799. 
-  J. Pallarés, A. González-cencerrado, I. Arauzo, Production
    and characterization of activated carbon from barley straw by
    physical activation with carbon dioxide and steam, Biomass
    Bioenergy, 115 (2018) 64–73. 
-  X. Song, R. Xu, K. Wang, High capacity adsorption of malachite
    green in a mesoporous tyre-derived activated carbon, Asia-Pac.
    J. Chem. Eng., 8 (2013) 172–177. 
-  S. Pandia, A.T. Hutagalung, A.D. Siahaan, Utilization of cocoa
    peel as biosorbent for oil and color removal in palm oil mill
    effluent (POME), IOP Conf. Ser.: Mater. Sci. Eng., 300 (2018),
    doi: 10.1088/1757-899X/300/1/012066. 
-  S. Maulina, S. Iriansyah, Characteristics of activated carbon
    resulted from pyrolysis of the oil palm fronds powder,
    IOP Conf. Ser.: Mater. Sci. Eng., 309 (2018), doi: 10.1088/
    1757-899X/309/1/012072. 
-  J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodríguez,
    C. Belver, A review on the synthesis and characterization
    of biomass-derived carbons for adsorption of emerging
    contaminants from water, J. Carbon Res., 4 (2018) 63, https://
    doi.org/10.3390/c4040063. 
-  F. Hanum, O. Bani, L.I. Wirani, Characterization of activated
    carbon from rice husk by HCl activation and its application
    for lead (Pb) removal in car battery wastewater, IOP Conf. Ser.:
    Mater. Sci. Eng., 180 (2017), doi: 10.1088/1757-899X/180/1/012151. 
-  J. Yang, K.Q. Qiu, Development of high surface area mesoporous
    activated carbons from herb residues, Chem. Eng. J., 167 (2011)
    148–154. 
-  N. Khadhri, M. El Khames Saad, M. Ben Mosbah, Y. Moussaoui,
    Batch and continuous column adsorption of indigo carmine
    onto activated carbon derived from date palm petiole,
    J. Environ. Chem. Eng., 7 (2019) 102775. 
-  T. Haeldermans, J. Claesen, J. Maggen, R. Carleer, J. Yperman,
    P. Adriaensens, P. Samyn, D. Vandamme, A. Cuypers, K. Vanreppelen,
    S. Schreurs, Microwave assisted and conventional
    pyrolysis of MDF – characterization of the produced biochars,
    J. Anal. Appl. Pyrolysis, 138 (2019) 218–230. 
-  S. Rattanapan, J. Srikram, P. Kongsune, Adsorption of methyl
    orange on coffee grounds activated carbon, Energy Procedia,
    138 (2017) 949–954. 
-  C.G. Joseph, J. Janaun, M. Massuanna, Removal of malachite
    green from aqueous solution by waste tyre derived activated
    carbon, Malaysian J. Chem., 17 (2015) 16–28. 
-  Y. Gokce, Z. Aktas, Nitric acid modification of activated carbon
    produced from waste tea and adsorption of methylene blue and
    phenol, Appl. Surf. Sci., 313 (2014) 352–359. 
-  M. Uchimiya, A. Orlov, G. Ramakrishnan, K. Sistani, In situ and
    ex situ spectroscopic monitoring of biochar’s surface functional
    groups, J. Anal. Appl. Pyrolysis, 102 (2013) 53–59. 
-  K.F. Fu, Q.Y. Yue, B.Y. Gao, Y. Wang, Q. Li, Activated carbon
    from tomato stem by chemical activation with FeCl2, Colloids
  Surf., A, 529 (2017) 842–849. 
-  O.A. Ioannidou, A.A. Zabaniotou, G.G. Stavropoulos, A. Islam,
    T.A. Albanis, Preparation of activated carbons from agricultural
    residues for pesticide adsorption, Chemosphere, 80 (2010)
    1328–1336. 
-  T.-H. Liou, S.-J. Wu, Characteristics of microporous/mesoporous
    carbons prepared from rice husk under base- and acid-treated
    conditions, J. Hazard. Mater., 171 (2009) 693–703. 
-  L.M. Mosley, P. Willson, B. Hamilton, G. Butler, R. Seaman, The
    capacity of biochar made from common reeds to neutralise pH
    and remove dissolved metals in acid drainage, Environ. Sci.
    Pollut. Res., 22 (2015) 15113–15122. 
-  H.Y. Zhang, Z.W. Wang, R.N. Li, J.L. Guo, Y. Li, J.M. Zhu,
    X.Y. Xie, TiO2 supported on reed straw biochar as an adsorptive
    and photocatalytic composite for the efficient degradation
    of sulfamethoxazole in aqueous matrices, Chemosphere,
  185 (2017) 351–360. 
-  D. Xin-Hui, C. Srinivasakannan, P. Jin-Hui, Z. Li-Bo, Z. Zheng-
    Yong, Preparation of activated carbon from Jatropha hull
    with microwave heating: optimization using response surface
    methodology, Fuel Process. Technol., 92 (2011) 394–400. 
-  R. Soltani, A. Marjani, S. Shirazian, Facile one-pot synthesis
    of thiol-functionalized mesoporous silica submicrospheres for
    Tl(I) adsorption: isotherm, kinetic and thermodynamic studies,
    J. Hazard. Mater., 371 (2019) 146–155. 
-  O.S. Bello, Adsorptive removal of malachite green with
    activated carbon prepared from oil palm fruit fibre by KOH
    activation and CO2 gasification, South Africa J. Chem., 66 (2013)
  32–41. 
-  M. Baghdadi, B. Alipour Soltani, M. Nourani, Malachite green
    removal from aqueous solutions using fibrous cellulose sulfate
    prepared from medical cotton waste: comprehensive batch and
    column studies, J. Ind. Eng. Chem., 55 (2017) 128–139. 
-  T.P. Krishna Murthy, B.S. Gowrishankar, M.N. Chandra Prabha,
    M. Kruthi, R. Hari Krishna, Studies on batch adsorptive removal
    of malachite green from synthetic wastewater using acid treated
    coffee husk: equilibrium, kinetics and thermodynamic studies,
    Microchem. J., 146 (2019) 192–201. 
-  G. Sharma, S. Sharma, A. Kumar, M. Naushad, B. Du,
    T. Ahamad, A.A. Ghfar, A.A. Alqadami, F.J. Stadler, Honeycomb
    structured activated carbon synthesized from Pinus roxburghii
    cone as effective bioadsorbent for toxic malachite green dye,
    J. Water Process Eng., 32 (2019) 100931. 
-  F. Bouaziz, M. Koubaa, F. Kallel, R.E. Ghorbel, S.E. Chaabouni,
    Adsorptive removal of malachite green from aqueous solutions
    by almond gum: kinetic study and equilibrium isotherms, Int. J.
    Biol. Macromol., 105 (2017) 56–65. 
-  V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent
    wastewater dye removal methods: a review, J. Environ. Chem.
    Eng., 6 (2018) 4676–4697. 
-  Y. Wu, S.L. Zeng, F.F. Wang, M. Megharaj, R. Naidu, Z.L. Chen,
    Heterogeneous Fenton-like oxidation of malachite green by
    iron-based nanoparticles synthesized by tea extract as a catalyst,
    Sep. Purif. Technol., 154 (2015) 161–167. 
-  H.M. Chen, J. Liu, X.Z. Cheng, Y. Peng, Adsorption for the
    removal of malachite green by using eggshell membrane in
    environment water samples, Adv. Mater. Res., 573–574 (2012)
    63–67. 
-  V. Nirmaladevi, M. Makeswari, T. Santhi, malachite green dye
    degradation using ZnCl2 activated Ricinus communis stem by
  sunlight irradiation, Rasayan J. Chem., 11 (2018) 219–227. 
-  M. Mohammad, S. Maitra, B.K. Dutta, Comparison of activated
    carbon and physic seed hull for the removal of malachite
    green dye from aqueous solution, Water Air Soil Pollut.,
    229 (2018) 1–14. 
-  S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption
    thermodynamics, kinetics and isosteric heat of adsorption
    of malachite green onto chemically modified rice husk,
    Desalination, 265 (2011) 159–168. 
-  Z.S. Chen, H.B. Deng, C. Chen, Y. Yang, H. Xu, Biosorption of
    malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method, J. Environ. Health Sci. Eng., 12 (2014)
    1–10. 
-  S. Rangabhashiyam, P. Balasubramanian, Performance of
    novel biosorbents prepared using native and NaOH treated
    Peltophorum pterocarpum fruit shells for the removal of malachite
    green, Bioresour. Technol. Rep., 3 (2018) 75–81. 
-  H.N. Bhatti, A. Jabeen, M. Iqbal, S. Noreen, Z. Naseem,
    Adsorptive behavior of rice bran-based composites for
    malachite green dye: isotherm, kinetic and thermodynamic
    studies, J. Mol. Liq., 237 (2017) 322–333. 
-  G. Selvaraju, N.K.A. Bakar, Production of a new industrially
    viable green-activated carbon from Artocarpus integer fruit
    processing waste and evaluation of its chemical, morphological
    and adsorption properties, J. Cleaner Prod., 141 (2017) 989–999. 
-  G.G. Stavropoulos, A.A. Zabaniotou, Minimizing activated
    carbons production cost, Fuel Process. Technol., 90 (2009)
    952–957.