1. P. González-García, Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications, Renewable Sustainable Energy Rev., 82 (2018) 1393–1414.
  2. R. Tobi Ayinla, J.O. Dennis, H.M. Zaid, Y.K. Sanusi, F. Usman, L.L. Adebayo, A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage, J. Cleaner Prod., 229 (2019) 1427–1442.
  3. S. Hajati, M. Ghaedi, S. Yaghoubi, Local, cheep and nontoxic activated carbon as efficient adsorbent for the simultaneous removal of cadmium ions and malachite green: optimization by surface response methodology, J. Ind. Eng. Chem., 21 (2015) 760–767.
  4. N. Saman, A. Abdul Aziz, K. Johari, S.-T. Song, H. Mat, Adsorptive efficacy analysis of lignocellulosic waste carbonaceous adsorbents toward different, Process Saf. Environ. Prot., 96 (2015) 33–42.
  5. M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati, M.K. Purkait, Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon, Spectrochim. Acta, Part A, 135 (2015) 479–490.
  6. S. Sangon, A.J. Hunt, T.M. Attard, P. Mengchang, Y. Ngernyen, N. Supanchaiyamat, Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal, J. Cleaner Prod., 172 (2018) 1128–1139.
  7. A.P. de Oliveira, A.N. Módenes, M.E. Bragião, C.L. Hinterholz, D.E.G. Trigueros, I.G. de O. Bezerra, Use of grape pomace as a biosorbent for the removal of the Brown KROM KGT dye, Bioresour. Technol. Rep., 2 (2018) 92–99.
  8. S.K. Low, M.C. Tan, Dye adsorption characteristic of ultrasound pre-treated pomelo peel, J. Environ. Chem. Eng., 6 (2018) 3502–3509.
  9. H.T. Van, L.H. Nguyen, V.D. Nguyen, X.H. Nguyen, T.H. Nguyen, T.V. Nguyen, S. Vigneswaran, J. Rinklebe, H.N. Tran, Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: batch and column studies, J. Environ. Manage., 241 (2019) 535–548.
  10. A. Khasri, O.S. Bello, M.A. Ahmad, Mesoporous activated carbon from Pentace species sawdust via microwave-induced KOH activation: optimization and methylene blue adsorption, Res. Chem. Intermed., 44 (2018) 5737–5757.
  11. N.A. Rashidi, S. Yusup, A review on recent technological advancement in the activated carbon production from oil palm wastes, Chem. Eng. J., 314 (2017) 277–290.
  12. A. Pandiarajan, R. Kamaraj, S. Vasudevan, S. Vasudevan, OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies, Bioresour. Technol., 261 (2018) 329–341.
  13. K. Sartova, E. Omurzak, G. Kambarova, I. Dzhumaev, B. Borkoev, Activated carbon obtained from the cotton processing wastes, Diamond Relat. Mater., 91 (2019) 90–97.
  14. D.Q. Tian, Z.H. Xu, D.F. Zhang, W.F. Chen, J.L. Cai, H.X. Deng, Z.H. Sun, Y.W. Zhou, Micro–mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T, J. Solid State Chem., 269 (2019) 580–587.
  15. IMARC Group, Biomass Gasification Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2018– 2023, IMARC Group, United States, 2017.
  16. V. Benedetti, F. Patuzzi, M. Baratieri, Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications, Appl. Energy, 227 (2018) 92–99.
  17. M. Galhetas, A.S. Mestre, M.L. Pinto, I. Gulyurtlu, H. Lopes, A.P. Carvalho, Chars from gasification of coal and pine activated with K2CO3: Acetaminophen and caffeine adsorption from aqueous solutions, J. Colloid Interface Sci., 433 (2014) 2014.
  18. T. Maneerung, J. Liew, Y.J. Dai, S. Kawi, C. Chong, C.-H. Wang, Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies, Bioresour. Technol., 200 (2016) 350–359.
  19. S.J. Culp, F.A. Beland, Malachite green: a toxicological review, J. Am. Coll. Toxicol., 15 (1996) 219–238.
  20. P.P. Kwan, S. Banerjee, M. Shariff, N.A.S. Ishak, F.M. Yusoff, Quantitative analysis of malachite green and leucomalachite green residues in fish purchased from the markets in Malaysia, Food Control, 92 (2018) 101–106.
  21. S.N. Jain, P.R. Gogate, Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: batch and column studies, J. Environ. Manage., 210 (2018) 226–238.
  22. M. de la Luz-Asunción, E.E. Pérez-Ramírez, A.L. Martínez-Hernández, V.M. Castano, V. Sánchez-Mendieta, C. Velasco-Santos, Non-linear modeling of kinetic and equilibrium data for the adsorption of hexavalent chromium by carbon nanomaterials: dimension and functionalization, Chin. J. Chem. Eng., 27 (2019) 912–919.
  23. M.-H. To, P. Hadi, C.-W. Hui, C.S.K. Lin, G. McKay, Mechanistic study of atenolol, acebutolol and carbamazepine adsorption on waste biomass derived activated carbon, J. Mol. Liq., 241 (2017) 386–398.
  24. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 1–11.
  25. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies, J. Environ. Chem. Eng., 2 (2014) 1434–1444.
  26. K.C. Nebaghe, Y. El Boundati, K. Ziat, A. Naji, L. Rghioui, M. Saidi, Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper(II) onto treated Martil sand, Fluid Phase Equilib., 430 (2016) 188–194.
  27. L.C. Zheng, Y.B. Yang, P.P. Meng, D. Peng, Absorption of cadmium (II) via sulfur-chelating based cellulose: characterization, isotherm models and their error analysis, Carbohydr. Polym., 209 (2019) 38–50.
  28. F. Gritti, G. Guiochon, New thermodynamically consistent competitive adsorption isotherm in RPLC, J. Colloid Interface Sci., 264 (2003) 43–59.
  29. M. Wakkel, B. Khiari, F. Zagrouba, Textile wastewater treatment by agro-industrial waste: equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent, J. Taiwan Inst. Chem. Eng., 96 (2019) 439–452.
  30. A.K. Nayak, A. Pal, Development and validation of an adsorption kinetic model at solid-liquid interface using normalized Gudermannian function, J. Mol. Liq., 276 (2019) 67–77.
  31. J.O. Babalola, B.A. Koiki, Y. Eniayewu, A. Salimonu, J.O. Olowoyo, V.O. Oninla, H.A. Alabi, A.E. Ofomaja, M.O. Omorogie, Adsorption efficacy of Cedrela odorata seed waste for dyes: non linear fractal kinetics and non linear equilibrium studies, J. Environ. Chem. Eng., 4 (2016) 3527–3536.
  32. S. Batra, D. Datta, N.S. Beesabathuni, N. Kanjolia, S. Saha, Adsorption of bisphenol-A from aqueous solution using amberlite XAD-7 impregnated with aliquat 336: batch, column, and design studies, Process Saf. Environ. Prot., 122 (2019) 232–246.
  33. A. Syafiuddin, S. Salmiati, J. Jonbi, M.A. Fulazzaky, Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents, J. Environ. Manage., 218 (2018) 59–70.
  34. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution, Alexandria Eng. J., 54 (2015) 1253–1263.
  35. P. Saha, S. Chowdhury, Insight Into Adsorption Thermodynamics, in: Thermodynamics, InTech Europe, 2011, pp. 349–364.
  36. A. Ebadi, J.S. Soltan Mohammadzadeh, A. Khudiev, What is the correct form of BET isotherm for modeling liquid phase adsorption?, Adsorption, 15 (2009) 65–73.
  37. W.Y. Qu, T. Yuan, G.J. Yin, S. Xu, Q. Zhang, H.J. Su, Effect of properties of activated carbon on malachite green adsorption, Fuel, 249 (2019) 45–53.
  38. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq., 273 (2019) 425–434.
  39. Y. Liu, Is the free energy change of adsorption correctly calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985.
  40. L. Lonappan, T. Rouissi, Y. Liu, S.K. Brar, R.Y. Surampalli, Removal of diclofenac using microbiochar fixed-bed column bioreactor, J. Environ. Chem. Eng., 7 (2019) 102894.
  41. J. Jang, D.S. Lee, Effective phosphorus removal using chitosan/Ca-organically modified montmorillonite beads in batch and fixed-bed column studies, J. Hazard. Mater., 375 (2019) 9–18.
  42. M.A. Ahmad, R. Alrozi, Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology, Chem. Eng. J., 165 (2010) 883–890.
  43. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology, Chem. Eng. J., 137 (2008) 462–470.
  44. T. Yang, A.C. Lua, Characteristics of activated carbons prepared from pistachio-nut shells by physical activation, J. Colloid Interface Sci., 267 (2003) 408–417.
  45. R.K. Liew, E. Azwar, P.N.Y. Yek, X.Y. Lim, C.K. Cheng, J.-H. Ng, A. Jusoh, W.H. Lam, M.D. Ibrahim, N.L. Ma, S.S. Lam, Microwave pyrolysis with KOH/NaOH mixture activation: a new approach to produce micro-mesoporous activated carbon for textile dye adsorption, Bioresour. Technol., 266 (2018) 1–10.
  46. S.S. Lam, R.K. Liew, Y.M. Wong, E. Azwar, A. Jusoh, R. Wahi, Activated carbon for catalyst support from microwave pyrolysis of orange peel, Waste Biomass Valorization, 8 (2017) 2109–2119.
  47. M.A. Ahmad, N.S. Afandi, O.S. Bello, Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon, Appl. Water Sci., 7 (2015) 717–727.
  48. M. Makeswari, T. Santhi, Removal of malachite green dye from aqueous solutions onto microwave assisted zinc chloride chemical activated epicarp of Ricinus communis, J. Water Resour. Prot., 5 (2013) 222–238.
  49. A.A.A. Zuki, M. Awang, A.A. Mahmud, M.H. Zain, J.J. Jaafar, Adsorption of malachite green dye on microwave and chemically treated Casuarina equisetifolia seeds as an eco-friendly adsorbent, Adv. Environ. Biol., 9 (2015) 216–223.
  50. S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma, C.L. Lee, H.A. Chase, Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent, J. Cleaner Prod., 162 (2017) 1376–1387.
  51. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  52. A.E. Ogungbenro, D.V. Quang, K.A. Al-Ali, L.F. Vega, M.R.M. Abu-Zahra, Physical synthesis and characterization of activated carbon from date seeds for CO2 capture, J. Environ. Chem. Eng., 6 (2018) 4245–4252.
  53. J.-X. Yang, G.-B. Hong, Adsorption behavior of modified Glossogyne tenuifolia leaves as a potential biosorbent for the removal of dyes, J. Mol. Liq., 252 (2018) 289–295.
  54. K.Y. Foo, B.H. Hameed, Porous structure and adsorptive properties of pineapple peel based activated carbons prepared via microwave assisted KOH and K2CO3 activation, Microporous Mesoporous Mater., 148 (2012) 191–195.
  55. K.Y. Foo, B.H. Hameed, Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation, Bioresour. Technol., 102 (2011) 9794–9799.
  56. J. Pallarés, A. González-cencerrado, I. Arauzo, Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam, Biomass Bioenergy, 115 (2018) 64–73.
  57. X. Song, R. Xu, K. Wang, High capacity adsorption of malachite green in a mesoporous tyre-derived activated carbon, Asia-Pac. J. Chem. Eng., 8 (2013) 172–177.
  58. S. Pandia, A.T. Hutagalung, A.D. Siahaan, Utilization of cocoa peel as biosorbent for oil and color removal in palm oil mill effluent (POME), IOP Conf. Ser.: Mater. Sci. Eng., 300 (2018), doi: 10.1088/1757-899X/300/1/012066.
  59. S. Maulina, S. Iriansyah, Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder, IOP Conf. Ser.: Mater. Sci. Eng., 309 (2018), doi: 10.1088/ 1757-899X/309/1/012072.
  60. J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodríguez, C. Belver, A review on the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water, J. Carbon Res., 4 (2018) 63, https://
  61. F. Hanum, O. Bani, L.I. Wirani, Characterization of activated carbon from rice husk by HCl activation and its application for lead (Pb) removal in car battery wastewater, IOP Conf. Ser.: Mater. Sci. Eng., 180 (2017), doi: 10.1088/1757-899X/180/1/012151.
  62. J. Yang, K.Q. Qiu, Development of high surface area mesoporous activated carbons from herb residues, Chem. Eng. J., 167 (2011) 148–154.
  63. N. Khadhri, M. El Khames Saad, M. Ben Mosbah, Y. Moussaoui, Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole, J. Environ. Chem. Eng., 7 (2019) 102775.
  64. T. Haeldermans, J. Claesen, J. Maggen, R. Carleer, J. Yperman, P. Adriaensens, P. Samyn, D. Vandamme, A. Cuypers, K. Vanreppelen, S. Schreurs, Microwave assisted and conventional pyrolysis of MDF – characterization of the produced biochars, J. Anal. Appl. Pyrolysis, 138 (2019) 218–230.
  65. S. Rattanapan, J. Srikram, P. Kongsune, Adsorption of methyl orange on coffee grounds activated carbon, Energy Procedia, 138 (2017) 949–954.
  66. C.G. Joseph, J. Janaun, M. Massuanna, Removal of malachite green from aqueous solution by waste tyre derived activated carbon, Malaysian J. Chem., 17 (2015) 16–28.
  67. Y. Gokce, Z. Aktas, Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol, Appl. Surf. Sci., 313 (2014) 352–359.
  68. M. Uchimiya, A. Orlov, G. Ramakrishnan, K. Sistani, In situ and ex situ spectroscopic monitoring of biochar’s surface functional groups, J. Anal. Appl. Pyrolysis, 102 (2013) 53–59.
  69. K.F. Fu, Q.Y. Yue, B.Y. Gao, Y. Wang, Q. Li, Activated carbon from tomato stem by chemical activation with FeCl2, Colloids Surf., A, 529 (2017) 842–849.
  70. O.A. Ioannidou, A.A. Zabaniotou, G.G. Stavropoulos, A. Islam, T.A. Albanis, Preparation of activated carbons from agricultural residues for pesticide adsorption, Chemosphere, 80 (2010) 1328–1336.
  71. T.-H. Liou, S.-J. Wu, Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions, J. Hazard. Mater., 171 (2009) 693–703.
  72. L.M. Mosley, P. Willson, B. Hamilton, G. Butler, R. Seaman, The capacity of biochar made from common reeds to neutralise pH and remove dissolved metals in acid drainage, Environ. Sci. Pollut. Res., 22 (2015) 15113–15122.
  73. H.Y. Zhang, Z.W. Wang, R.N. Li, J.L. Guo, Y. Li, J.M. Zhu, X.Y. Xie, TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices, Chemosphere, 185 (2017) 351–360.
  74. D. Xin-Hui, C. Srinivasakannan, P. Jin-Hui, Z. Li-Bo, Z. Zheng- Yong, Preparation of activated carbon from Jatropha hull with microwave heating: optimization using response surface methodology, Fuel Process. Technol., 92 (2011) 394–400.
  75. R. Soltani, A. Marjani, S. Shirazian, Facile one-pot synthesis of thiol-functionalized mesoporous silica submicrospheres for Tl(I) adsorption: isotherm, kinetic and thermodynamic studies, J. Hazard. Mater., 371 (2019) 146–155.
  76. O.S. Bello, Adsorptive removal of malachite green with activated carbon prepared from oil palm fruit fibre by KOH activation and CO2 gasification, South Africa J. Chem., 66 (2013) 32–41.
  77. M. Baghdadi, B. Alipour Soltani, M. Nourani, Malachite green removal from aqueous solutions using fibrous cellulose sulfate prepared from medical cotton waste: comprehensive batch and column studies, J. Ind. Eng. Chem., 55 (2017) 128–139.
  78. T.P. Krishna Murthy, B.S. Gowrishankar, M.N. Chandra Prabha, M. Kruthi, R. Hari Krishna, Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: equilibrium, kinetics and thermodynamic studies, Microchem. J., 146 (2019) 192–201.
  79. G. Sharma, S. Sharma, A. Kumar, M. Naushad, B. Du, T. Ahamad, A.A. Ghfar, A.A. Alqadami, F.J. Stadler, Honeycomb structured activated carbon synthesized from Pinus roxburghii cone as effective bioadsorbent for toxic malachite green dye, J. Water Process Eng., 32 (2019) 100931.
  80. F. Bouaziz, M. Koubaa, F. Kallel, R.E. Ghorbel, S.E. Chaabouni, Adsorptive removal of malachite green from aqueous solutions by almond gum: kinetic study and equilibrium isotherms, Int. J. Biol. Macromol., 105 (2017) 56–65.
  81. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review, J. Environ. Chem. Eng., 6 (2018) 4676–4697.
  82. Y. Wu, S.L. Zeng, F.F. Wang, M. Megharaj, R. Naidu, Z.L. Chen, Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst, Sep. Purif. Technol., 154 (2015) 161–167.
  83. H.M. Chen, J. Liu, X.Z. Cheng, Y. Peng, Adsorption for the removal of malachite green by using eggshell membrane in environment water samples, Adv. Mater. Res., 573–574 (2012) 63–67.
  84. V. Nirmaladevi, M. Makeswari, T. Santhi, malachite green dye degradation using ZnCl2 activated Ricinus communis stem by sunlight irradiation, Rasayan J. Chem., 11 (2018) 219–227.
  85. M. Mohammad, S. Maitra, B.K. Dutta, Comparison of activated carbon and physic seed hull for the removal of malachite green dye from aqueous solution, Water Air Soil Pollut., 229 (2018) 1–14.
  86. S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination, 265 (2011) 159–168.
  87. Z.S. Chen, H.B. Deng, C. Chen, Y. Yang, H. Xu, Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method, J. Environ. Health Sci. Eng., 12 (2014) 1–10.
  88. S. Rangabhashiyam, P. Balasubramanian, Performance of novel biosorbents prepared using native and NaOH treated Peltophorum pterocarpum fruit shells for the removal of malachite green, Bioresour. Technol. Rep., 3 (2018) 75–81.
  89. H.N. Bhatti, A. Jabeen, M. Iqbal, S. Noreen, Z. Naseem, Adsorptive behavior of rice bran-based composites for malachite green dye: isotherm, kinetic and thermodynamic studies, J. Mol. Liq., 237 (2017) 322–333.
  90. G. Selvaraju, N.K.A. Bakar, Production of a new industrially viable green-activated carbon from Artocarpus integer fruit processing waste and evaluation of its chemical, morphological and adsorption properties, J. Cleaner Prod., 141 (2017) 989–999.
  91. G.G. Stavropoulos, A.A. Zabaniotou, Minimizing activated carbons production cost, Fuel Process. Technol., 90 (2009) 952–957.