References

  1. R. Hela, M. Ťažký, Development of structural concrete with fly ash, Adv. Mater. Res., 1054 (2014) 143–147.
  2. D. Rantung, S.W.M. Supit, S. Nicolaas, Effects of different size of fly ash as cement replacement on self-compacting concrete properties, Int. J. Sustainable Eng.: Proc. Ser., 1 (2019) 180–186.
  3. S.M. Pathan, L.A.G. Aylmore, T.D. Colmer, Properties of several fly ash materials in relation to use as soil amendments, J. Environ. Qual., 32 (2003) 687–693.
  4. M. Ahmaruzzaman, A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36 (2010) 327–363.
  5. R. Pires dos Santos, J. Martins, C. Gadelha, B. Cavada, A.V. Albertini, F. Arruda, M. Vasconcelos, E. Teixeira, F. Alves, J.L. Filho, V. Freire, Coal fly ash ceramics: preparation, characterization, and use in the hydrolysis of sucrose, Sci. World J., 2014 (2014) 7 pages, https://doi.org/10.1155/2014/154651.
  6. Y. Luo, S. Zheng, S. Ma, C. Liu, X. Wang, Ceramic tiles derived from coal fly ash: preparation and mechanical characterization, Ceram. Int., 43 (2017) 11953–11966.
  7. A. Satapathy, S.P. Sahu, D. Mishra, Development of protective coatings using fly ash premixed with metal powder on aluminium substrates, Waste Manage. Res., 28 (2009) 660–666.
  8. A.A.B. Moghal, State-of-the-art review on the role of fly ashes in geotechnical and geoenvironmental applications, J. Mater. Civ. Eng., 29 (2017) 1–14.
  9. A. Kaithwas, M. Prasad, A. Kulshreshtha, S. Verma, Industrial wastes derived solid adsorbents for CO2 capture: a mini review, Chem. Eng. Res. Des., 90 (2012) 1632–1641.
  10. A. Adamczuk, D. Kołodyńska, Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan, Chem. Eng. J., 274 (2015) 200–212.
  11. M. Wdowin, M. Franus, R. Panek, L. Badura, W. Franus, The conversion technology of fly ash into zeolites, Clean Technol. Environ. Policy, 16 (2014) 1217–1223.
  12. K. Margeta, N.Z. Logar, M. Šiljeg, A. Farkas, Natural Zeolites in Water Treatment – How Effective is Their Use, Water Treatment, W. Elshorbagy, R.K. Chowdhury, Eds., Natural Zeolites in Water Treatment, Crotia, 2013, pp. 81–112.
  13. M. Basu, M. Pande, P.B.S. Bhadoria, S.C. Mahapatra, Potential fly-ash utilization in agriculture: a global review, Prog. Nat. Sci.-Mater., 19 (2009) 1173–1186.
  14. P. Kishor, A. Ghosh, D. Kumar, Use of fly ash in agriculture: a way to improve soil fertility and its productivity, Asian J. Agric. Res., 4 (2010) 1–14.
  15. M. Piekarczyk, K. Kotwica, D. Jaskulski, The elemental composition of ash from straw and hay in the context of their agricultural utilization, Acta Sci. Pol. Agric., 10 (2011) 97–104.
  16. M. Wójcik, F. Stachowicz, T. Trzepieciński, A.A. Masłoń, I. Opaliński, Possibility of recycling the biomass ashes in sewage sludge management, Arch. Environ. Prot., 44 (2018) 51–57.
  17. C.D. Tsadilas, V. Samaras, P. Kazai, J. Sgouras, Fly Ash an Sewage Sludge Application on an Acid Soil and Their Influence on Some Soil Properties and Wheat Biomass Production, 12th ISCO Conference, Beijing, 2002.
  18. J.Q. Xu, R.L. Yu, X.Y. Dong, G.R. Hu, X.S. Shang, Q. Wang, H.W. Li, Effects of municipal sewage sludge stabilized by fly ash on the growth of Manilagrass and transfer of heavy metals, J. Hazard. Mater., 217–218 (2012) 58–66.
  19. S. Vassilev, D. Baxter, L. Andersen, C. Vassileva, An overview of the composition and application of biomass ash. Part 1 – phasemineral and chemical composition and classification, Fuel, 105 (2013) 40–76.
  20. S. Vassilev, D. Baxter, L. Andersen, C. Vassileva, An overview of the composition and application of biomass ash. Part 2 – potential utilization, technological and ecological advantages and challenges, Fuel, 105 (2013) 19–39.
  21. S. Vassilev, C. Vassileva, D. Baxter, Trace element concentrations and associations in some biomass ashes, Fuel, 129 (2014) 292–313.
  22. A.A. Bogush, J.A. Stegemanna, R. William, J.G. Wood, Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching, Fuel, 211 (2018) 712–725.
  23. Study of Conditions and Directions of Spatial Development of the Town and Commune of Choroszcz, Choroszcz, 2017 (in Polish).
  24. G. Borowski, M. Ozga, Comparison of the processing conditions and the properties of granules made from fly ash of lignite and coal, Waste Manage., 104 (2020) 192–197. Fig. 5. Correlations between the zinc content and the pH of the aqueous extracts of the ashes tested.
  25. A. Fuller, J. Maier, E. Karampinis, J. Kalivodova, P. Grammelis, E. Kakaras, G. Scheffknecht, Fly ash formation and characteristics from (co-)combustion of an herbaceous biomass and a Greek lignite (low-rank coal) in a pulverized fuel pilot-scale test facility, Energies, 11 (2018) 1581.
  26. G. Zając, J. Szyszlak-Bargłowicz, W. Gołębiowski, M. Szczepanik, Chemical characteristics of biomass ashes, Energies, 11 (2018) 2885.
  27. O. Lahav, L. Birnhack, Aquatic Chemistry: For Water and Wastewater Treatment Applications, De Gruyter STEM, Germany, 2019.
  28. Y. Zhang, B. Cetin, W.J. Likos, T.B. Edil, Impacts of pH on leaching potential of elements from MSW incineration fly ash, Fuel, 184 (2016) 815–825.
  29. K. Huang, K.K. Inoue, H. Harada, H. Kawakita, K. Ohto, Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants, Trans. Nonferrous Met. Soc. China, 21 (2011) 1422–1427.
  30. W. Gwenzi, N.M. Mupatsi, Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris, Waste Manage., 49 (2016) 114–123.
  31. J. Koniuszy-Nycz, Assessment of leaching and bioavailability of heavy metals in industrial ash from biomass, Sci. J., 167 (2018) 18–31 (in Polish).
  32. P. Samaras, C.A. Papadimitriou, I. Haritou, A.I. Zouboulis, Investigation of sevage slude stabilization potential by the addition of fly ash and lime, J. Hazard. Mater., 154 (2008) 1052–1059.
  33. E. Haustein, L. Grabarczyk, The impact of biomass co-firing with hard coal on selected physicochemical properties of fly ash, Energy Policy, t. 15, z. 2, (2012) 87–101 (in Polish).
  34. A. Sobczyk, T. Czech, A. Jaworek, A. Krupa, Comparison of Physical Properties of Fly Ashes from Coal, Lignite and Biomass Combustion, Polish Academy of Sciences, Gdańsk, 2010, pp. 73–82 (in Polish).
  35. H.T. Phung, H.V. Lam, A.L. Page, L.J. Lund, The practice of leaching boron and soluble salts from fly ash-amended soils, Water Air Soil Pollut., 12 (1979) 247–254.
  36. D.K. Szponder, K. Trybalsk, Fly ash in agriculture - modern applications of coal combustion by-products, TEKA Kom. Mot. Energ. Roln. – OL PAN, 11 (2011) 373–385.
  37. S. Vassilev, D. Baxter, L. Andersen, C. Vassileva, An overview of the chemical com-position of biomass, Fuel, 89 (2010) 913–933.
  38. E. Krzywy, C. Wołoszczyk, E. Możdżer, Possibility of producing granulated organic-mineral fertilizers from some municipal and industrial wastes, Chemik, 69 (2015) 684–697.