References

  1. I. Schneider, The importance and impact of process water, Filtr. + Sep., 54 (2017) 32–35.
  2. L. Schweitzer, J. Noblet, Green Chemistry: An Inclusive Approach, Elsevier Inc., Amsterdam, Netherlands, 2017, pp. 261–290.
  3. L. Joseph, B.-M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: a review, Chemosphere, 229 (2019) 142–159.
  4. J.-J. Kim, Y.-S. Kim, V. Kumar, Heavy metal toxicity: an update of chelating therapeutic strategies, J. Trace Elem. Med. Biol., 54 (2019) 226–231.
  5. E. Sikorska-Sobiegraj, S. Zieliński, Adsorption of heavy metals on activated carbon in the presence of selected organic compounds, Przem. Chem., 84 (2005) 254–256 (in Polish).
  6. Z. Dębowski, J. Lach, Removal of heavy metal cations from water on activated carbons, Ochr. Środowiska, 2 (1996) 23–25 (in Polish).
  7. J. Lach, E. Okoniewska, L. Stępniak, E. Ociepa, Impact of the ultrasonic field on the adsorption of cadmium cations, Ochr. Środowiska, 15 (2013) 2142–2157 (in Polish).
  8. M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia, 50 (2014) 113–120.
  9. D. Eeshwarasinghe, P. Loganathan, S. Vigneswaran, Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon, Chemosphere, 223 (2019) 616–627.
  10. A.A. Peláez-Cid, V. Romero-Hernández, A.M. Herrera- González, A. Bautista-Hernández, O. Coreño-Alonso, Synthesis of activated carbons from black sapote seeds, characterization and application in the elimination of heavy metals and textile dyes, Chin. J. Chem. Eng., 28 (2020) 613–623.
  11. V. Nejadshafiee, M.R. Islami, Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent, Mater. Sci. Eng., C, 101 (2019) 42–52.
  12. A. Fouladi Tajar, T. Kaghazchi, M. Soleimani, Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells, J. Hazard. Mater., 165 (2009) 1159–1164.
  13. U.I. Gaya, E. Otene, A.H. Abdullah, Adsorption of aqueous Cd(II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell, Springerplus, 4 (2015) 1–18.
  14. S. Abbasizadeh, A.R. Keshtkar, M.A. Mousavian, Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups, J. Ind. Eng. Chem., 20 (2014) 1656–1664.
  15. M.M. Tehrani, S. Abbasizadeh, A. Alamdari, S.E. Mousavi, Prediction of simultaneous sorption of copper(II), cobalt(II) and zinc(II) contaminants from water systems by a novel multifunctionalized zirconia nanofiber, Desal. Water Treat., 62 (2017) 403–417.
  16. M. Bozorgi, S. Abbasizadeh, F. Samani, S.E. Mousavi, Performance of synthesized cast and electrospun PVA/ chitosan/ZnO-NH2 nano-adsorbents in single and simultaneous adsorption of cadmium and nickel ions from wastewater, Environ. Sci. Pollut. Res., 25 (2018) 17457–17472.
  17. M. Shafiee, M. Ali Abedi, S. Abbasizadeh, R.K. Sheshdeh, S.E. Mousavi, S. Shohani, Effect of zeolite hydroxyl active site distribution on adsorption of Pb(II) and Ni(II) pollutants from water system by polymeric nanofibers, Sep. Sci. Technol., 55 (2020) 1–18.
  18. Y. Zhu, W.H. Fan, T.T. Zhou, X.M. Li, Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms, Sci. Total Environ., 678 (2019) 253–266.
  19. H. Chen, Y. Zhao, Q.Y. Yang, Q. Yan, Preparation of polyammonium/ sodium dithiocarbamate for the efficient removal of chelated heavy metal ions from aqueous environments, J. Environ. Chem. Eng., 6 (2018) 2344–2354.
  20. K. Yang, G. Wang, X.M. Chen, X. Wang, F.L. Liu, Treatment of wastewater containing Cu2+ using a novel macromolecular heavy metal chelating flocculant xanthated chitosan, Colloids Surf., A, 558 (2018) 384–391.
  21. P. Racho, P. Phalathip, Modified nylon fibers with amino chelating groups for heavy metal removal, Energy Procedia, 118 (2017) 195–200.
  22. B. Spiess, E. Harraka, D. Wencker, P. Laugel, Complexing properties of nitrilotri(methylenephosphonic) acid with various transition and heavy metals in a 10:90 ethanol—water medium, Polyhedron, 6 (1987) 1247–1249.
  23. D. Kołodyńska, M. Gęca, M. Siek, Z. Hubicki, Nitrilotris (methylenephosphonic) acid as a complexing agent in sorption of heavy metal ions on ion exchangers, Chem. Eng. J., 215–216 (2013) 948–958.
  24. R.B. Rios, F.M. Stragliotto, H.R. Peixoto, A.E.B. Torres, M. Bastos-Neto, D.C.S. Azevedo, C.L. Cavalcante Jr., Studies on the adsorption behavior of CO2-CH4 mixtures using activated carbon, Braz. J. Chem. Eng., 30 (2013) 939–951.
  25. M. Kwiatkowski, J. Duda, Fast multivariant analysis of the adsorption isotherm of the carbon dioxide and methane, Przem. Chem., 93 (2014) 878–881 (in Polish).
  26. N. Tzabar, H.J.M. ter Brake, Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride, Adsorption, 22 (2016) 901–914.
  27. H. Fałtynowicz, P. Hodurek, J. Kaczmarczyk, M. Kułażyński, M. Łukaszewicz, Hydrolysis of surfactin over activated carbon, Bioorg. Chem., 93 (2019) 102896.