References

  1. N. Ashbolt, D. Cunliffe, L. D’Anglada, P. Greiner, R. Gupta, J. Hearn, A. Jayaratne, K.C. Lai, N. O’Connor, D. Purkiss, D. Viola, K.W. Wong, WHO/FWC/WSH/14.03, Water Safety in Distribution Systems, World Health Organization, Geneva, 2014.
  2. V. Kanakoudis, S. Tsitsifli, Potable water security assessment – a review on monitoring, modelling and optimization techniques, applied to water distribution networks, Desal. Water Treat., 99 (2017) 18–26.
  3. A. Tavasolifar, B. Bina, M.M. Amin, A. Ebrahimi, M. Jalali, Implementation of hazard analysis and critical control points in the drinking water supply system, Int. J. Environ. Health Eng., 1 (2012) 1–7.
  4. S. Tsitsifli, V. Kanakoudis, Disinfection impacts to drinking water safety–a review, Proceedings, 2 (2018) 1–7.
  5. R. Mukundan, R. van Dreason, Predicting trihalomethanes in the New York City water supply, J. Environ. Qual., 43 (2014) 611–616.
  6. E. Sawade, R. Fabris, S. Laingam, T. Lowe, A. Humpage, M. Drikas, Operational strategy for disinfection by-product management, AWA Water, 41 (2014) 178–183.
  7. M. Kyriakou, D.G. Eliades, M.M. Polycarpou, dbpRisk: Disinfection By-Product Risk Estimation, C.G. Panayiotou, G. Ellinas, E. Kyriakides, M.M. Polycarpou, Eds., Critical Information Infrastructures Security, Springer, Cham, 2016, pp. 57–68.
  8. S.D. Richardson, A.D. Thruston, T.V. Caughran, P.H. Chen, T.W. Collette, T.L. Floyd, K.M. Schenck, B.W. Lykins, G. Sun, G. Majetich, Identification of new drinking water disinfection by-products formed in the presence of Bromide, Environ. Sci. Technol., 33 (1999) 378–3383.
  9. J. Hu, H. Song, T. Karanfil, Halonitromethane formation potentials in drinking waters, Water Res., 44 (2010) 105–114.
  10. H.Y. Zhai, X.R. Zhang, Formation and decomposition of new and unknown polar brominated disinfection by-products during chlorination, Environ. Sci. Technol., 45 (2011) 2194–2201.
  11. C.Y. Chang, Y.H. Hsieh, S.S. Hsu, P.Y. Hua, K.H. Wang, The formation of disinfection by-products in water treated with chlorine dioxide, J. Hazard. Mater., 79 (2000) 89–102.
  12. I. Zimoch, J. Szymik-Gralewska, Optimization of the Drinking Water Coagulation and Filtration System as a Result of Reliability Analysis and Life Cycle Costing, T. Nowakowski, M. Młynczak, A. Jodejko-Pietruczuk, S. Werbińska-Wojciechowska, Safety and Reliability: Methodology and Applications, Proceedings of the European Safety and Reliability Conference, ESREL, CRC Press/Balkema, Leiden, 2015, pp. 487–496.
  13. R.K. Padhi, S. Subramanian, A.K. Mohanty, K.K. Satpathy, Comparative assessment of chlorine reactivity and trihalomethanes formation potential of three different water sources, J. Water Process Eng., 29 (2019) 1–11.
  14. I. Zimoch, E. Bartkiewicz, Analysis of disinfectant decay in a water supply system based on mathematical model, Desal. Water Treat., 134 (2018) 272–280.
  15. S.E. Hrudey, L.C. Backer, A.R. Humpage, S.W. Krasner, D.S. Michaud, L.E. Moore, Evaluating evidence for association of human bladder cancer with drinking-water chlorination disinfection by-products, J. Toxicol. Environ. Health Part B, 18 (2015) 213–241.
  16. C.H. Jeong, C. Postigo, S.D. Richardson, J.E. Simmons, S.Y. Kimura, B.J. Mariñas, D. Barcelo, P. Liang, E.D. Wagner, M.J. Plewa, Occurrence and comparative toxicity of haloacetaldehyde disinfection by-products in drinking water, Environ. Sci. Technol., 49 (2015) 13749–13759.
  17. I. Zimoch, E. Łobos, Evaluation of health risk caused by chloroform in drinking water, Desal. Water Treat., 57 (2016) 1027–1033.
  18. M. Kumari, S.K. Gupta, A.K. Misha, Multi-exposure cancer and non-cancer risk assessment of trihalomethanes in drinking water supplies–a case study of Eastern region of India, Ecotoxicol. Environ. Saf., 113 (2015) 433–438.
  19. Y. Wang, G. Zhu, B. Engel, Health risk assessment of trihalomethanes in water treatment plants in Jiangsu Province, China, Ecotoxicol. Environ. Saf., 170 (2019) 346–354.
  20. D.A. Savitz, P.C. Singer, A.H. Herring, Exposure to drinking water disinfection by-products and pregnancy loss, Am. J. Epidemiol., 164 (2006) 1043–1051.
  21. K. Gonelas, A. Chondronasios, V. Kanakoudis, M. Patelis, P. Korkana, Forming DMAs in a water distribution network considering the operating pressure and the chlorine residual concentration as the design parameters, J. Hydroinf., 19 (2017) 900–910.
  22. K. Świtnicka, P. Suchrab, B. Kowalska, The optimization of a water distribution system using Bentley Water GEMS software, ITM Web Conf., 15 (2017) 1–4.
  23. C.M. Shanks, J.B. Sérodes, M.J. Rodriguez, Spatio-temporal variability of non-regulated disinfection by-products within a drinking water distribution network, Water Res., 47 (2013) 3231–3243.
  24. A. Kravvari, V. Kanakoudis, M. Patelis, The impact of pressure management techniques on the water age in an urban pipe network—the case of Kos city network, Proceedings, 2 (2018) 699.
  25. Commission Directive (EU) 2015/1787 of 6 October 2015 Amending Annexes II and III to Council Directive 98/83/EC on the Quality of Water.
  26. W. Li, M. He, Y. Sun, Q. Cao, A novel layered fuzzy Petri nets modelling and reasoning method for process equipment failure risk assessment, J. Loss Prev. Process Ind., 62 (2019) 1–8.
  27. N.B. Gusareva, G.I. Andryushchenko, K.G. Tsaritova, V.V. Zelenov, L.N. Sorokina, Energy enterprise risks analysis using fuzzy logic methods, Int. J. Energy Econ. Policy, 9 (2019) 366–372.
  28. K. Boryczko, B. Tchórzewska-Cieślak, Application of fuzzy fault tree in risk analysis of collective water supply systems, J. KONBiN, 24 (2012) 13–24.
  29. B. Tchórzewska-Cieślak, Model of risk of water mains failure using fuzzy logic, J. Pol. Saf. Reliab. Assoc., 1 (2010) 255–264.
  30. L.A. Zadeh, Fuzzylogic, Computer, 21 (1988) 83–93.
  31. H.C. Phan, A.S. Dhar, G. Hu, R. Sadiq, Managing water main breaks in distribution networks – a risk-based decision making, Reliab. Eng. Syst. Saf., 191 (2019) 1–14.