References

  1. M. Al-Shammiri and M. Safar, Multi-effect distillation plants: state of the art. Desalination, 126 (1999) 45–59.
  2. A. Huicochea, J. Siqueiros and R.J. Romero, Portable water purification system integrated to a heat transformer. Desalination, 165 (2004) 385–391.
  3. R. Saari, Usability of low temperature waste heat for sea water desalination. Desalination, 39 (1981) 147–158.
  4. J. Siqueiros and R.J. Romero, Increase of COP for heat transformer in water purification systems. Part I—Increasing heat source temperature, Appl. Thermal Eng., 27 (2007) 1043–1053.
  5. R. Saravanan, Studies on two-fluid bubble pump operated vapor absorption refrigeration system, PhD Thesis, IIT Madras, Chennai, 1999.
  6. K.E. Herold and M.J. Morjan, Thermodynamic properties of lithium bromide/water solution, Part 1, ASHRAE Trans., 93 (1987) 35–48.
  7. A. Kumar and V. S. Patwardhan, Vapor pressure and enthalpy of aqueous lithium bromide solutions. Heat Rec. Sys. CHP, 12(4) (1992) 311–315.
  8. K.R. Patil, S.K. Chaudhari and S.S. Katti, Thermodynamic design data for absorption heat transformers, Part III, Operating on water-lithium iodide, Heat Rec. Sys. CHP, 11(5) (1991) 361–369.
  9. G.S. Grover, S. Devotta and F.A. Holland, Thermodynamic design data for absorption heat transformers, Part III. Operating on water-lithium chloride. Heat Rec. Sys. CHP, 8(5) (1988) 425–431.
  10. S. Iyoki, S. Ohemori and T. Uemura, Heat capacities of water–lithium bromide–lithium iodide system. J. Chem. Eng. Data., 35 (1990) 317–320.
  11. S. Iyoki, Y. Kuriyama and T. Uemura, Vapor pressures of water–lithium chloride–lithium nitrate system. J. Chem. Thermodyn., 25 (1993) 569–577.
  12. S. Iyoki, R. Yamanaka and T. Uemura, Physical and thermal properties of the water–lithium bromide–lithium nitrate system, Int. J. Refrig., 16 (1993) 191–200.
  13. C.O. Adegoke and W.B. Gosney, Vapor pressure data for LiBr+ ZnBr2–H2O solutions, Int. J. Refrig., 16 (1991) 39–45.
  14. H. Iizuka and K. Nagamatsuya, New working fluids containing ethylene-glycol for air-cooled chillers, 2. Proc. 3rd International Energy Agency Heat Pump Conference, Tokyo, 1990, pp. 565–574.
  15. S. Iyoki, Water–lithium bromide+lithium chloride zinc chloride system, Refrig., 68 (1993) 46–49.
  16. S. Iyoki and T. Uemura, Performance characteristics of the water– lithium bromide–zinc chloride–calcium bromide absorption refrigerating machine. Absorption heat pump and absorption heat transformer, Int. J. Refrig., 12 (1989) 272–277.
  17. S. Iyoki and T. Uemura, Physical and thermal properties of the water–lithium bromide–zinc bromide–lithium chloride system, Part 2, ASHRAE Trans., 96 (1990) 323–328.
  18. M.R. Ally, Vapour liquid equilibrium and enthalpy concentration temperature correlations for ternary nitrate mixtures, Part 2, ASHRAE Trans., 94 (1988) 631–638.
  19. O.A. Pinchuk, I.I. Orekhov and S.V. Karavan, Investigation of thermodynamic properties of multi-component solution for absorption refrigerating machine, Kholodinana Tekhnik, 6 (1982) 36–38.
  20. H.R. Lee, K.-K. Koo, S. Jeong, J.-S. Kim, H. Lee, Y.-S. Oh, D.-R. Park and Y.-S. Baek, Thermodynamic design data and performance evaluation of the water + lithium bromide + lithium iodide + lithium nitrate + lithium chloride system for absorption chiller. Appl. Eng., 20 (2000) 707–720.
  21. J. Yin, L. Shi, M.-S. Zhu and L. Zhong, Performance analysis of an absorption heat transformer with different working fluid combinations, Appl. Energy, 67(3) (2000) 281–292.
  22. M. Bourouis,A. Coronas, R.J. Romeroand J. Siqueiro, Purification of seawater using absorption heat transformers with water– (LiBr+LiI+LiNO3+LiC1) and low temperature heat sources, Desalination, 166 (2004) 209–214.
  23. A. Jernqvist, K. Abrahamsson and G. Aly, On the efficiencies of absorption heat transformers, Heat Rec. Sys. CHP, 12(4) (1992) 323–334.
  24. A. Hatzikioseyian, R. Vidali and P. Kousi, Modelling and thermodynamic analysis of a multi effect distillation (MED) plant for seawater desalination, http//www.metal.ntua.gr/uploads/3024/179.