References

  1. M. Ghorbanpour, M. Yousofi, S. Lotfiman, Photocatalytic decolorization of methyl orange by silica-supported TiO2 composites, J. Ultrafine Grained Nanostruct. Mater., 50 (2017) 43–50.
  2. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
  3. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review, Ind. Eng. Chem. Res., 52 (2013) 3581–3599.
  4. N.N. Binitha, Z. Yaakob, M.R. Reshmi, S. Sugunan, V.K. Ambili, A.A. Zetty, Preparation and characterization of nano silverdoped mesoporoustitania photocatalysts for dye degradation, Catal. Today, 147 (2009) S76–S80.
  5. M. Madadi, M. Ghorbanpour, A. Feizi, Antibacterial and photocatalytic activity of anatase phase Ag-doped TiO2 nanoparticles, Micro Nano Lett., 13 (2018) 1590–1593.
  6. M. Ghorbanpour, A. Feizi, Iron-doped TiO2 catalysts with photocatalytic activity, J. Water Environ. Nanotechnol., 4 (2019) 60–66.
  7. M. Madadi, M. Ghorbanpour, A. Feizi, Preparation and characterization of solar light-induced rutile Cu-doped TiO2 photocatalyst by solid-state molten salt method, Desal. Water Treat., 145 (2019) 257–261.
  8. A. Eini, M. Ghorbanpour, Evaluation the antibacterial effect of Zn-doped TiO2 nanoparticlesimmobilized on the bentonite, Nanomeghyas, 6(2019) 21–29.
  9. L. Wang, Y. Yamauchi, Strategic synthesis of tri-metallic Au@ Pd@Pt core-shell nanoparticles from poly (vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts, Chem. Mater., 23 (2011) 2457–2465.
  10. G. Sharma, V.K. Gupta, S. Agarwal, S. Bhogal, M. Naushad, A. Kumar, F.J. Stadler, Fabrication and characterization of tri-metallic nano-photocatalyst for remediation of ampicillin antibiotic, J. Mol. Liq., 260 (2018) 342–350.
  11. Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III), J. Phys. Chem. C, 111 (2007) 10618–10623.
  12. J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review, Chem. Soc. Rev., 43 (2014) 6920–6937.
  13. M. Malekshahi Byranvand, A. Nemati Kharat, L. Fatholahi, Z. Malekshahi Beiranvand, A review on synthesis of nano-TiO2 via different methods, J. Nanostruct., 3 (2013) 1–9.
  14. B. Roy, P.A. Fuierer, S. Aich, Synthesis of TiO2 scaffold by a 2 step bi-layer process using a molten salt synthesis technique, Powder Technol., 208 (2011) 657–662.
  15. B. Roy, S.P. Ahrenkiel, P.A. Fuierer, Controlling the size and morphology of TiO2 powder by molten and solid salt synthesis, J. Am. Ceram. Soc., 91 (2008) 2455–2463.
  16. M. Ghorbanpour, S. Lotfiman, Solid-state immobilisation of titanium dioxide nanoparticles onto nanoclay, Micro Nano Lett., 11 (2016) 684–687.
  17. A. Mohammed, A. Kadhum, M. Ba-Abbad, A. Al-Amiery, Optimization of solar photocatalytic degradation of chloroxylenol using TiO2, Er3+/TiO2, and Ni2+/TiO2 via the Taguchi orthogonal array technique, Catalysts, 6 (2016) 163.
  18. A.A. Ashkarran, S.M. Aghigh, N.J. Farahani, Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents, Curr. Appl. Phys., 11 (2011) 1048–1055.
  19. W.C. Hung, S.H. Fu, J.J. Tseng, H. Chu, T.H. Ko, Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method, Chemosphere, 66 (2007) 2142–2151.
  20. M. Crişan, M. Răileanu, N. Drăgan, D. Crişan, A. Ianculescu, I. Niţoi, P. Oancea, S. Şomăcescu, N. Stănică, B. Vasile, C. Stan, Sol–gel iron-doped TiO2 nanopowders with photocatalytic activity, Appl. Catal., A, 504 (2015) 130–142.