References

  1. S. Safe, O. Hutzinger, Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs): biochemistry, toxicology, and mechanism of action, Crit. Rev. Toxicol., 13 (1984) 319–395.
  2. Y.A. Shaban, M.A.E. Sayed, A.A.E. Maradny, R.K.A. Farawatia, M.I.A. Zobidi, S.U.M. Khanc, Photocatalytic removal of polychlorinated biphenyls (PCBs) using carbon-modified titanium oxide nanoparticles, Appl. Surf. Sci., 365 (2016) 108–113.
  3. K.C. Jones, P.D. Voogt, Persistent organic pollutants (POPs): state of the science, Environ. Pollut., 100 (1999) 209–221.
  4. Y. Abrha, D. Raghavan, Polychlorinated biphenyl (PCB) recovery from spiked organic matrix using accelerated solvent extraction (ASE) and Soxhlet extraction, J. Hazard. Mater., 80 (2000) 147–157.
  5. K. Anezaki, T. Nakano, Unintentional PCB in chlorophenylsilanes as a source of contamination in environmental samples, J. Hazard. Mater., 287 (2015) 111–117.
  6. K. Anezaki, T. Nakano, Concentration levels and congener profiles of polychlorinated biphenyls, pentachlorobenzene, and hexachlorobenzene in commercial pigments, Environ. Sci. Pollut. Res., 21 (2014) 998–1009.
  7. J.D. Hutchinson, M.P. Simmonds, Organochlorine contamination in pinnipeds, Rev. Environ. Contam. Toxicol., 136 (1994) 123–167.
  8. W. Brack, T. Kind, H. Hollert, S. Schraderc, M. Möderc, Sequential fractionation procedure for the identification of potentially cytochrome P4501A-inducing compounds, J. Chromatogr. A, 986 (2003) 55–66.
  9. C. Bergkvist, M. Kippler, S.C. Larsson, M. Berglund, A. Glynn, A. Wolk, A. Kesson, Dietary exposure to polychlorinated biphenyls is associated with increased risk of stroke in women, J. Intern. Med., 276 (2015) 248–259.
  10. R.F. Marek, P.S. Thorne, D.W. Jeanne, K.C. Hornbuckle, Variability in PCB and OH-PCB serum levels in children and their mothers in urban and rural U.S. communities, Environ. Sci. Technol., 48 (2014) 13459–13467.
  11. E.H. Buckley, Accumulation of airborne polychlorinated biphenyls in foliage, Science, 216 (1982) 520–522.
  12. Y. Mahfooz, A. Yasar, M.T. Sohail, A.B. Tabinda, R. Rasheed, S. Irshad, B. Yousaf, Investigating the drinking and surface water quality and associated health risks in a semi-arid multiindustrial metropolis (Faisalabad), Pakistan, Environ. Sci. Pollut. Res., 26 (2019) 20853–20865.
  13. M.T. Sohail, R. Aftabb, Y. Mahfoozc, A. Yasar, Y. Yen, S.A. Shaikh, S. Irshad, Estimation of water quality, management and risk assessment in Khyber Pakhtunkhwa and Gilgit-Baltistan, Pakistan, Desal. Water Treat., 171 (2019) 105–114.
  14. M.T. Sohail, Y. Mahfooz, K. Azam, Y. Yen, G.F. Liao, S. Fahad, Impacts of urbanization and land cover dynamics on underground water in Islamabad, Pakistan, Desal. Water Treat., 1159 (2019) 402–411.
  15. B. Gelavizh, J. Sahand, V. Zarezade, M. Khatebasreh, F. Mehdipour, F. Ghanbari, 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: reusability, identification of degradation intermediates and potential application for real wastewater, Chemosphere, 201 (2018) 370–379.
  16. G.V. Lowry, K.M. Johnson, Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution, Environ. Sci. Technol., 38 (2004) 5208–5216.
  17. S.Q. Wang, C. Chen, S.Y. Zhao, J.Z. He, Microbial synergistic interactions for reductive dechlorination of polychlorinated biphenyls, Sci. Total Environ., 666 (2019) 368–376.
  18. L. Xu, Y. Teng, Z.G. Li, M. Norton, Y.M. Luo, Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum, Sci. Total Environ., 408 (2010) 1007–1013.
  19. J. Borja, D.M. Taleon, J. Auresenia, S. Gallardo, Polychlorinated biphenyls and their biodegradation, Process Biochem., 40 (2005) 1999–2013.
  20. I. Velzeboer, C.J.A.F. Kwadijk, A.A. Koelmans, Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes, Environ. Sci. Technol., 48 (2014) 4869–4876.
  21. D.D. Shao, G.D. Sheng, C.L. Chen, X.K. Wang, M. Nagatsu, Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes, Chemosphere, 79 (2010) 679–685.
  22. H. Dudasova, J. Derco, L. Sumegova, K. Dercova. K. Laszlova, Removal of polychlorinated biphenyl congeners in mixture Delor 103 from wastewater by ozonation vs/and biological method, J. Hazard. Mater., 321 (2017) 54–61.
  23. B.Z. Wu, H.Y. Chen, S.J. Wang, C.M. Wai, W.S. Liao, K.H. Chiu, Reductive dechlorination for remediation of polychlorinated biphenyls, Chemosphere, 88 (2012) 757–768.
  24. Z. Liu, F.S. Zhang, Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs, Bioresour. Technol., 101 (2010) 2562–2564.
  25. R.W. Gillham, S.F.O. Hannesin, Enhanced degradation of halogenated aliphatics by zero‐valent iron, Ground Water, 32 (1994) 958–967.
  26. S. Comba, A.D. Molfetta, R. Sethi, A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers, Water Air Soil Pollut., 215 (2011) 595–607.
  27. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 257 (2011) 2717–2730.
  28. Y. Liu, G.V. Lowry, Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination, Environ. Sci. Technol., 40 (2006) 6085–6090.
  29. L. Chekli, B. Bayatsarmadi, R. Sekine, B. Sarkar, A.M. Shen, K.G. Scheckel, W. Skinner, R. Naidu, H.K. Shon, E. Lombi, E. Donner, Analytical characterisation of nanoscale zero-valent iron: a methodological review, Anal. Chim. Acta, 903 (2016) 13–35.
  30. C. Uezuem, T. Shahwan, A.E. Eroglu, K.R. Hallam, T.B. Scott, I. Lieberwirth, Synthesis and characterization of kaolinitesupported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci., 43 (2009) 172–181.
  31. A.F. Alkaim, Z. Sadik, D.K. Mahdi, S.M. Alshrefi, A.M.A. Sammarraie, F.M. Alamgir, P.M. Singh, A.M. Aljeboree, Preparation, structure and adsorption properties of synthesized multiwall carbon nanotubes for highly effective removal of Maxilon blue dye, Korean J. Chem. Eng., 32 (2015) 2456–2462.
  32. A.A. Markadeh, A. Rezaee, S.O. Rastegar, H. Hossini, S. Ahmadi, E. Hoseinzadeh, Optimization of Remazol Brilliant blue adsorption process from aqueous solutions using multiwalled carbon nanotube, Desal. Water Treat., 57 (2016) 1–9.
  33. X.S. Lv, J. Xu, G.M. Jiang, X.H. Xu, Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes, Chemosphere, 85 (2011) 1204–1209.
  34. A. Soliemanzadeh, M. Fekri, Synthesis of clay-supported nanoscale zero-valent iron using green tea extract for the removal of phosphorus from aqueous solutions, Chin. J. Chem. Eng., 25 (2011) 924–930.
  35. Y. Chen, Z.H. Lin, R.G. Hao, H. Xu, C.Y. Huang, Rapid adsorption and reductive degradation of Naphthol Green B from aqueous solution by polypyrrole/attapulgite composites supported nanoscale zero-valent iron, J. Hazard. Mater., 371 (2019) 8–17.
  36. W. Wang, M.H. Zhou, M. Qing, J.J. Yue, X. Wang, Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst, Catal. Commun., 11 (2010) 937–941.
  37. J.N. Xiao, B.Y. Gao, Q.Y. Yue, Y. Gao, Q. Li, Removal of trihalomethanes from reclaimed-water by original and modified nanoscale zero-valent iron: characterization, kinetics and mechanism, Chem. Eng. J., 262 (2015) 1226–1236.
  38. T. Liu, Z.L. Wang, Y. Sun, Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater, Chem. Eng. J., 263 (2015) 55–61.
  39. X. Zhang, S. Lin, X.Q. Lu, Z.L. Chen, Removal of Pb(II) from water using synthesized kaolin supported nanoscale zerovalent iron, Chem. Eng. J., 163 (2010) 243–248.
  40. H. Feng, D.Y. Zhao, C. Roberts, Stabilization of zero-valent iron nanoparticles for enhanced in situ destruction of chlorinated solvents in soils and groundwater, Nanotechnol. Appl. Clean Water, 31 (2014) 491–501.
  41. X. Zhang, S. Lin, Z.L. Chen, M. Megharaj, R. Naidu, Kaolinitesupported nanoscale zero-valent iron for removal of Pb from aqueous solution: reactivity, characterization and mechanism, Water Res., 45 (2011) 3481–3488.
  42. L.N. Shi, X. Zhang, Z.L. Chen, Removal of chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron, Water Res., 45 (2011) 890–892.
  43. J.A. Gyamfi, V. Acha, Carriers for nano zerovalent iron (nZVI): synthesis, application and efficiency, RSC Adv., 6 (2016) 91025–91044.
  44. E. Petala, K. Dimos, A. Douvalis, T. Bakas, J. Tucek, R. Zboril, M.A. Karakassides, Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution, J. Hazard. Mater., 261 (2013) 295–306.
  45. Z.Q. Fang, X.H. Qiu, J.H. Chen, X.Q. Qiu, Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism, J. Hazard. Mater., 185 (2011) 958–969.
  46. Y.P. Sun, X.Q. Li, J.H. Cao, W.X. Zhang, H.P. Wang, Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci., 120 (2006) 47–56.
  47. Z.H. Pang, M.Y. Yan, X.S. Jia, Z. X. Wang, J.Y. Chen, Debromination of decabromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron: preparation, characterization and influence factors, J. Environ. Sci., 26 (2014) 483–491.
  48. M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic−inorganic nanocomposite materials, Chem. Mater., 13 (2001) 3169–3183.
  49. X.F. Lv, H. Li, Y.Y. Ma, H. Yang, Q. Yang, Degradation of carbon tetrachloride by nanoscale zero-valent iron@magnetic Fe3O4: impact of reaction condition, kinetics, thermodynamics and mechanism, Appl. Organomet. Chem., 32 (2018) e4139.
  50. J.J. Wei, X.H. Xu, Y. Liu, D.H. Wang, Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters, Water Res., 40 (2006) 348–354.
  51. O.G. Apul, T. Karanfil, Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review, Water Res., 68 (2015) 34–55.
  52. L.L. Fan, C.N. Luo, M. Sun, X.J. Li, H.M. Qiu, Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/ graphene oxide composites, Colloids Surf., B, 103 (2013) 523–529.
  53. X.F. Lv, X.Q. Xue, G.M. Jiang, D.L. Wu, T.T. Sheng, H.Y. Zhou, X.H. Xu, Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium(VI) removal from aqueous solution, J. Colloid Interface Sci., 417 (2014) 51–59.
  54. Y.W. Wu, Q.Y. Yue, Z.F. Ren, B.Y. Gao, Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of chloramphenicol (CAP), J. Mol. Liq., 262 (2018) 19–28.
  55. B.D. Yirsaw, M. Megharaj, Z.L. Chen, N. Ravi, Environmental application and ecological significance of nano-zero valent iron, J. Environ. Sci., 44 (2016) 88–98.
  56. A. Agrawal, P.G. Tratnyek, Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30 (1996) 153–160.
  57. M.P. Watts, V.S. Coker, S.A. Parry, R.A.D. Thomas, R. Kalin, J.R. Lliyd, Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue, Appl. Geochem., 54 (2015) 27–42.
  58. X.G. Li, Y. Zhao, B.D. Xi, X.G. Meng, B. Gong, R. Li, X. Peng, H.L. Liu, Decolorization of methyl orange by a new claysupported nanoscale zero-valent iron: Synergetic effect, efficiency optimization and mechanism, J. Environ. Sci., 52 (2017) 8–17.
  59. W. Zhang, T. Yu, X.L. Han, W.C. Ying, Removal of 2-ClBP from soil–water system using activated carbon supported nanoscale zerovalent iron, J. Environ. Sci., 47 (2016) 143–152.
  60. H. Choi, R. Souhail A. Abed, S. Agarwal, D.D. Dionysiou, Synthesis of reactive nano-Fe/Pd bimetallic systemimpregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs, Chem. Mater., 20 (2015) 3649–3655.
  61. M. Soroosh, A. Hyeunhwan, C. Dongwon, J. Moon, Activated carbon impregnated by zero-valent iron nanoparticles (AC/ nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: material characterizations and kinetic studies, Chem. Eng. J., 353 (2018) 781–795.
  62. C. Hyeok, A. Shirish, S.R. Al-Abed, Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept, Environ. Sci. Technol., 43 (2009) 488–493.
  63. L.J. Matheson, P.G. Tratnyek, Reductive dehalogenation of chlorinated methanes by iron metal, Environ. Sci. Technol., 28 (1994) 2045–2053.
  64. R. Lookman, L. Bastiaens, B. Borremans, M. Maesen, J. Gemoets, L. Diels, Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zerovalent iron, J. Contam. Hydrol., 74 (2004) 133–144.
  65. R.J. Barnes, O. Riba, M.N. Gardner, T.B. Scott, S.A. Jackman, I.P. Thompson, Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions, Chemosphere, 79 (2010) 448–454.
  66. H. Xu, W.G. Tian, Y.J. Zhang, J. Tang, Z.T. Zhao, Y. Chen, Reduced graphene oxide/attapulgite-supported nanoscale zero-valent iron removal of acid red 18 from aqueous solution, Water Air Soil Pollut., 229 (2018) 229–238.
  67. X.Y. Li, L.H. Ai, J. Jiang, Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: surface corrosion retard induced the enhanced performance, Chem. Eng. J., 288 (2016) 789–797.
  68. H. Xu, Y.J. Zhang, Y. Cheng, T. Yong, W.G. Zhao, Z.T. Tang, J. Jiang, Polyaniline/attapulgite-supported nanoscale zerovalent iron for the rival removal of azo dyes in aqueous solution, Adsorpt. Sci. Technol., 37(1019) 217–235.