1. Y.H. Teow, A.W. Mohammad, New generation nanomaterials for water desalination: a review, Desalination, 451 (2019) 2–17.
  2. W.L. Ang, A.W. Mohammad, N. Hilal, C.P. Leo, A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants, Desalination, 363 (2015) 2–8.
  3. T. Distefano, S. Kelly, Are we in deep water? Water scarcity and its limits to economic growth, Ecol. Econ., 146 (2018) 130–147.
  4. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  5. P.S. Goh, T. Matsuura, A.F. Ismail, N. Hilal, Recent trends in membranes and membrane processes for desalination, Desalination, 391 (2016) 43–60.
  6. M.N.A. Hawlader, J.C. Ho, C.K. Teng, Desalination of seawater: an experiment with RO membranes, Desalination, 132 (2000) 275–280.
  7. Y.M. Kim, S.J. Kim, Y.S. Kim, S. Lee, I.S. Kim, J.H. Kim, Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network, Desalination, 238 (2009) 312–332.
  8. M.A. Jamil, B.A. Qureshi, S.M. Zubair, Exergo-economic analysis of a seawater reverse osmosis desalination plant with various retrofit options, Desalination, 401 (2017) 88–98.
  9. J. Imbrogno, J.J. Keating IV, J. Kilduff, Critical aspects of RO desalination: a combination strategy, Desalination, 401 (2017) 68–87.
  10. M. Göktuğ Ahunbay, Achieving high water recovery at low pressure in reverse osmosis processes for seawater desalination, Desalination, 465 (2019) 58–68.
  11. H. Sakai, T. Ueyama, M. Irie, K. Matsuyama, A. Tanioka, K. Saito, A. Kumano, Energy recovery by PRO in sea water desalination plant, Desalination, 389 (2016) 52–57.
  12. A. Subramani, M. Badruzzaman, J. Oppenheimer, J.G. Jacangelo, Energy minimization strategies and renewable energy utilization for desalination: a review, Water Res., 45 (2011) 1907–1920.
  13. Y. Wang, S.C. Wang, S.C. Xu. Experimental studies on dynamic process of energy recovery device for RO desalination plants, Desalination, 160 (2004) 187–193.
  14. D.W. Song, Y. Wang, S.C. Xu, J.P. Gao, Y.F. Ren, S.C. Wang, Analysis, experiment and application of a power-saving actuator applied in the piston type energy recovery device, Desalination, 361 (2015) 65–71.
  15. D.W. Song, Y. Wang, S.C. Xu, Z.C. Wang, H. Liu, S.C. Wang, Control logic and strategy for emergency condition of piston type energy recovery device, Desalination, 348 (2014) 1–7.
  16. J. Zhou, Y. Wang, Z.M. Feng, Z.S. He, S.C. Xu, Effective modifications of reciprocating-switcher energy recovery device by adopting pilot valve plates to decrease the switching load and fluid fluctuations, Desalination, 462 (2019) 39–47.
  17. N. Liu, Z.L. Liu, Y.X. Li, L.X. Sang, Studies on leakage characteristics and efficiency of a fully-rotary valve energy recovery device by CFD simulation, Desalination, 415 (2017) 40–48.
  18. N. Liu, Z.L. Liu, Y.X. Li, L.X. Sang, An optimization study on the seal structure of fully-rotary valve energy recovery device by CFD, Desalination, 459 (2019) 46–58.
  19. B. Peñate, L. García-Rodríguez, Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): technical and thermoeconomic assessment, Energy, 36 (2011) 613–626.
  20. S. Bross, W. Kochanowski, SWRO core hydraulic system: extension of the SalTec DT to higher flows and lower energy consumption, Desalination, 203 (2007) 160–167.
  21. S. Schafer, New Pressure Exchanger Design Concept for Sustainable, Long Term Costing Saving, IDA World Congress, 2011.
  22. Y. Wang, Y.F. Ren, J. Zhou, E.L. Xu, S.C. Xu, Functionality test of an innovative single-cylinder energy recovery device for SWRO desalination system, Desalination, 388 (2016) 22–28.
  23. J.X. Sun, Y. Wang, S.C. Xu, Y.X. Wang, Performance prediction of hydraulic energy recovery (HER) device with novel mechanics for small-scale SWRO desalination system, Desalination, 249 (2009) 667–671.
  24. A. Efraty, Closed circuit desalination series no-6: conventional RO compared with the conceptually different new closed circuit desalination technology, Desal. Water Treat., 41 (2012) 279–295.
  25. M.A. Sanza, V. Bonnélyea, G. Cremerb, Fujairah reverse osmosis plant: 2 years of operation, Desalination, 203 (2007) 91–99.
  26. T.H. Chong, S.-L. Loo, W.B. Krantz, Energy-efficient reverse osmosis desalination process, J. Membr. Sci., 473 (2015) 177–188.
  27. J.B. Kim, S.K. Hong, A novel single-pass reverse osmosis configuration for high-purity water production and low energy consumption in seawater desalination, Desalination, 429 (2018) 142–154.
  28. T.H. Chong, S.-L. Loo, A G. Fane, W.B. Krantz, Energy-efficient reverse osmosis desalination: effect of retentate recycle and pump and energy recovery device efficiencies, Desalination, 366 (2015) 15–31.
  29. K.H. Jeong, M.K. Park, T.H. Chong, Numerical model-based analysis of energy-efficient reverse osmosis (EERO) process: performance simulation and optimization, Desalination, 453 (2019) 10–21.
  30. H.-J. Oh, T.-M. Hwang, S. Lee, A simplified simulation model of RO systems for seawater desalination, Desalination, 238 (2009) 128–139.