References
 
  -  M. Rabiet, A. Togola, F. Brissaud, J.L. Seidel, H. Budzinski,
    F. Elbaz-Poulichet, Consequences of treated water recycling
    as regards pharmaceuticals and drugs in surface and ground
    waters of a medium-sized Mediterranean catchment, Environ.
    Sci. Technol., 40 (2006) 5282–5288. 
 
  -  L. Feng, N. Oturan, E.D. van Hullebusch, G. Esposito,
    M.A. Oturan, Degradation of anti-inflammatory drug ketoprofen
    by electro-oxidation: comparison of electro-Fenton
    and anodic oxidation processes, Environ. Sci. Pollut. Res. Int.,
    21 (2014) 8406–8416. 
 
  -  F. Qi, W. Chu, B. Xu, Ozonation of phenacetin in associated
      with a magnetic catalyst CuFe2O4: the reaction and transformation,
  Chem. Eng. J., 262 (2015) 552–562. 
 
  -  M. Xiao, Y. Zhang, Electro-catalytic oxidation of phenacetin
    with a three-dimensional reactor: degradation pathway and
    removal mechanism, Chemosphere, 152 (2016) 17–22. 
 
  -  O.T. Komesli, M. Muz, M.S. Ak, S. Bakirdere, C.F. Gokcay,
    Occurrence, fate and removal of endocrine disrupting
    compounds (EDCs) in Turkish wastewater treatment plants,
    Chem. Eng. J., 277 (2015) 202–208. 
 
  -  C.G. Daughton, I.S. Ruhoy, Lower-dose prescribing:
    minimizing “side effects” of pharmaceuticals on society and the
    environment, Sci. Total Environ., 443 (2013) 324–337. 
 
  -  F. Qi, W. Chu, B. Xu, Comparison of phenacetin degradation
      in aqueous solutions by catalytic ozonation with CuFe2O4 and
    its precursor: surface properties, intermediates and reaction
    mechanisms, Chem. Eng. J., 284 (2016) 28–36. 
 
  -  Y. Zhu, M. Wu, N. Gao, W. Chu, K. Li, S. Chen, Degradation
    of phenacetin by the UV/chlorine advanced oxidation process:
    kinetics, pathways, and toxicity evaluation, Chem. Eng. J.,
    335 (2018) 520–529. 
 
  -  X.L. Peng, Y.G. Zhang, Y. Liu, Fabrication of a novel high
    photocatalytic Ag/Ag3PO4/P25 (TiO2) heterojunction catalyst
    for reducing electron-hole pair recombination and improving
    photo-corrosion, Mater. Res. Express, 6 (2019) 065515. 
 
  -  S.J. Wang, C.C. Zhao, D.J. Wang, Y.Q. Wang, F. Liu, (OH)-
    O-center dot-initiated heterogeneous oxidation of methyl
    orange using an Fe–Ce/MCM-41 catalyst, RSC Adv., 6 (2016)
    18800–18808. 
 
  -  F.J. Real, F.J. Benitez, J.L. Acero, G. Roldan, Combined chemical
    oxidation and membrane filtration techniques applied to the
    removal of some selected pharmaceuticals from water systems,
    J. Environ. Sci. Health., Part A, 47 (2012) 522–533. 
 
  -  S. Khuntia, M.K. Sinha, P. Singh, Theoretical and experimental
    investigation of the mechanism of the catalytic ozonation
    process by using a manganese-based catalyst, Environ. Technol.,
    (2019) 1–8, doi: 10.1080/09593330.2019.1640800. 
 
  -  K. El Hassani, D. Kalnina, M. Turks, B.H. Beakou, A. Anouar,
    Enhanced degradation of an azo dye by catalytic ozonation
    over Ni-containing layered double hydroxide nanocatalyst,
    Sep. Purif. Technol., 210 (2019) 764–774. 
 
  -  C.M. Chen, Y. Chen, B.A. Yoza, Y.H. Du, Y.X. Wang, Q.X. Li,
    L.P. Yi, S.H. Guo, Q.H. Wang, Comparison of efficiencies and
    mechanisms of catalytic ozonation of recalcitrant petroleum
    refinery wastewater by Ce, Mg, and Ce–Mg oxides loaded
    Al2O3, Catalysts, 7 (2017) 72. 
 
  -  B. Wang, H. Zhang, F.F. Wang, X.G.Y. Xiong, K. Tian, Y.B. Sun,
    T.T. Yu, Application of heterogeneous catalytic ozonation for
    refractory organics in wastewater, Catalysts, 9 (2019) 241. 
 
  -  Y.D. Wang, W.F. Ma, B.A. Yoza, Y.Y. Xu, Q.X. Li, C.M. Chen,
    Q.H. Wang, Y. Gao, S.H. Guo, Y.L. Zhan, Investigation of
    catalytic ozonation of recalcitrant organic chemicals in
    aqueous solution over various ZSM-5 zeolites, Catalysts,
    8 (2018) 128. 
 
  -  D. Shahidi, R. Roy, A. Azzouz, Advances in catalytic oxidation
    of organic pollutants – prospects for thorough mineralization
    by natural clay catalysts, Appl. Catal., B, 174 (2015) 277–292. 
 
  -  W.L. Wang, H.Y. Hu, X. Liu, H.X. Shi, T.H. Zhou, C. Wang,
    Z.Y. Huo, Q.Y. Wu, Combination of catalytic ozonation by
    regenerated granular activated carbon (rGAC) and biological
    activated carbon in the advanced treatment of textile wastewater
    for reclamation, Chemosphere, 231 (2019) 369–377. 
 
  -  Y.G. Sun, X. Zhang, N. Li, X. Xing, H.L. Yang, F.L. Zhang,
    J. Cheng, Z.S. Zhang, Z.P. Hao, Surface properties enhanced
    MnxAlO oxide catalysts derived from MnxAl layered double
    hydroxides for acetone catalytic oxidation at low temperature,
    Appl. Catal., B, 251 (2019) 295–304. 
 
  -  X.D. Jia, S.J. Gao, T.Y. Liu, D.Q. Li, P.G. Tang, Y.J. Feng,
    Fabrication and bifunctional electrocatalytic performance of
    ternary Co/Ni/Mn layered double hydroxides/polypyrrole/
    reduced graphene oxide composite for oxygen reduction and
    evolution reactions, Electrochim. Acta, 245 (2017) 51–60. 
 
  -  N.T.K. Phuong, M.W. Beak, B.T. Huy, Y.I. Lee, Adsorption
    and photodegradation kinetics of herbicide 2,4,5-trichlorophenoxyacetic
    acid with MgFeTi layered double hydroxides,
    Chemosphere,
 
  -  Z. Xu, M. Xie, Y. Ben, J. Shen, F. Qi, Z. Chen, Efficiency and
    mechanism of atenolol decomposition in Co–FeOOH catalytic
    ozonation, J. Hazard. Mater., 365 (2019) 146–154. 
 
  -  K.J. Wei, X.X. Cao, W.C. Gu, P. Liang, X. Huang, X.Y. Zhang,
    Ni-induced C-Al2O3-framework ((Ni)CAF) supported coremultishell
    catalysts for efficient catalytic ozonation: a structure-to-performance study, Environ. Sci. Technol., 53 (2019)
    6917–6926. 
 
  -  Y.L. Nie, C. Hu, N.N. Li, L. Yang, J.H. Qu, Inhibition of bromate
    formation by surface reduction in catalytic ozonation of organic
    pollutants over β-FeOOH/Al2O3, Appl. Catal., B, 147 (2014)
    287–292. 
 
  -  O.E. Albertson, Changes in the biochemical oxygen demand
    procedure in the 21st edition of Standard Methods for the
    examination of water and wastewater, Water Environ. Res.,
    79 (2007) 453–455. 
 
  -  A. Alejandre, F. Medina, X. Rodriguez, P. Salagre, Y. Cesteros,
    J.E. Sueiras, Cu/Ni/Al layered double hydroxides as precursors
    of catalysts for the wet air oxidation of phenol aqueous
    solutions, Appl. Catal., B, 30 (2001) 195–207. 
 
  -  R. Danial, S. Sobri, L.C. Abdullah, M.N. Mobarekeh, FTIR,
    CHNS and XRD analyses define mechanism of glyphosate
    herbicide removal by electrocoagulation, Chemosphere,
    233 (2019) 559–569. 
 
  -  H. Chen, L.F. Hu, M. Chen, Y. Yan, L.M. Wu, Nickel–cobalt
    layered double hydroxide nanosheets for high-performance
    supercapacitor electrode materials, Adv. Funct. Mater.,
    24 (2014) 934–942. 
 
  -  S. Zhao, H.T. Zhu, Z. Wang, P. Song, M. Ban, X.F. Song, A loose
    hybrid nanofiltration membrane fabricated via chelatingassisted
    in-situ growth of Co/Ni LDHs for dye wastewater
    treatment, Chem. Eng. J., 353 (2018) 460–471. 
 
  -  R. Elmoubarki, F.Z. Mahjoubi, A. Elhalil, H. Tounsadi,
    M. Abdennouri, M. Sadiq, S. Qourzal, A. Zouhri, N. Barka,
    Ni/Fe and Mg/Fe layered double hydroxides and their calcined
    derivatives: preparation, characterization and application on
    textile dyes removal, J. Mater. Res. Technol., 6 (2017) 271–283. 
 
  -  Q.Z. Dai, J.Y. Wang, J. Yu, J. Chen, J.M. Chen, Catalytic ozonation
    for the degradation of acetylsalicylic acid in aqueous solution
    by magnetic CeO2 nanometer catalyst particles, Appl. Catal., B,
    144 (2014) 686–693. 
 
  -  D.P. Lapham, J.L. Lapham, BET surface area measurement of
    commercial magnesium stearate by krypton adsorption in
    preference to nitrogen adsorption, Int. J. Pharm., 568 (2019)
    118522. 
 
  -  B.A. Wan, Y.P. Yan, R.X. Huang, D.B. Abdala, F. Liu, Y.Z. Tang,
    W.F. Tan, X.H. Feng, Formation of Zn–Al layered double
    hydroxides (LDH) during the interaction of ZnO nanoparticles
    (NPs) with γ-Al2O3, Sci. Total Environ., 650 (2019) 1980–1987. 
 
  -  J. Qu, L. Sha, Z.G. Xu, Z.Y. He, M. Wu, C.J. Wu, Q.W. Zhang,
    Calcium chloride addition to overcome the barriers for synthesizing
    new Ca–Ti layered double hydroxide by mechanochemistry,
    Appl. Clay Sci., 173 (2019) 29–34. 
 
  -  L. Wu, X. Ding, Z.C. Zheng, Y.L. Ma, A. Atrens, X.B. Chen,
    Z.H. Xie, D.E. Sun, F.S. Pan, Fabrication and characterization
    of an actively protective Mg–Al LDHs/Al2O3 composite coating
    on magnesium alloy AZ31, Appl. Surf. Sci., 487 (2019) 558–568. 
 
  -  J.P. He, Z.X. Yang, L. Zhang, Y. Li, L.W. Pan, Cu supported on
    ZnAl-LDHs precursor prepared by in-situ synthesis method
    on γ-Al2O3 as catalytic material with high catalytic activity for
    methanol steam reforming, Int. J. Hydrogen Energy, 42 (2017)
    9930–9937. 
 
  -  Y.L. Nie, N.N. Li, C. Hu, Enhanced inhibition of bromate
    formation in catalytic ozonation of organic pollutants over
    Fe–Al LDH/Al2O3, Sep. Purif. Technol., 151 (2015) 256–261. 
 
  -  L.Y. Qu, H. Huang, F. Xia, Y.Y. Liu, R.A. Dahlgren, M.H. Zhang,
    K. Mei, Risk analysis of heavy metal concentration in surface
    waters across the rural-urban interface of the Wen-Rui Tang
    River, China, Environ. Pollut., 237 (2018) 639–649. 
 
  -  T. Guan, L. Fang, L.L. Liu, F. Wu, Y. Lu, H.J. Luo, J. Hu,
    B.S. Hu, M. Zhou, Self-supported ultrathin Ni–Co-LDH
    nanosheet array/Ag nanowire binder-free composite electrode
    for high-performance supercapacitor, J. Alloys Compd.,
    799 (2019) 521–528. 
 
  -  W.J. Lee, Y.P. Bao, X. Hu, T.T. Lim, Hybrid catalytic ozonationmembrane
    filtration process with CeOx and MnOx impregnated
    catalytic ceramic membranes for micropollutants degradation,
    Chem. Eng. J., 378 (2019) 121670. 
 
    -  P. Gao, Y. Song, S.N. Wang, C. Descorme, S.X. Yang, Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation
    (CWAO) of cationic red GTL under mild reaction conditions,
    Front. Environ. Sci. Eng., 12 (2018) 8. 
 
  -  U. von Gunten, Ozonation of drinking water: part I. Oxidation
    kinetics and product formation, Water Res., 37 (2003) 1443–1467. 
 
  -  Z.L. Song, Y.T. Zhang, C. Liu, B.B. Xu, F. Qi, D.H. Yuan, S.Y. Pu,
      Insight into •OH and •O2– formation in heterogeneous catalytic
    ozonation by delocalized electrons and surface oxygencontaining
    functional groups in layered-structure nanocarbons,
    Chem. Eng. J., 357 (2019) 655–666. 146 (2016) 51–59.