References

  1. W. Shao, J. Feng, J. Liu, G. Yang, Z. Yang, J. Wang, Research on the status of water conservation in the thermal power industry in China, Energy Procedia, 105 (2017) 3068–3074.
  2. R. Hu, T. Huang, T. Wang, H. Wang, X. Long, Application of chemical crystallization circulating pellet fluidized beds for softening and saving circulating water in thermal power plants, Int. J. Environ. Res. Public Health, 16 (2019) 1–12.
  3. J.L. Zhou, Y.Y. Fu, The study on water conservation in thermal power plants, Appl. Mech. Mater., 675–677 (2014) 1716–1720.
  4. J. Zhang, L. Chen, H. Zeng, X. Yan, X. Song, H. Yang, C. Ye, Pilot testing of outside-in MF and UF modules used for cooling tower blowdown pretreatment of power plants, Desalination, 214 (2007) 287–298.
  5. H. Maddah, A. Chogle, Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation, Appl. Water Sci., 7 (2016) 2637–2651.
  6. M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
  7. S.C. Yang, J. Choi, J.G. Yeo, S.I. Jeon, H.R. Park, D.K. Kim, Flowelectrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 50 (2016) 5892–5899.
  8. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8 (2015) 2296–2319.
  9. B. Jia, W. Zhang, Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review, Nanoscale Res. Lett., 11 (2016) 64–89.
  10. L. Agartan, B. Akuzum, T. Mathis, K. Ergenekon, E. Agar, E.C. Kumbur, Influence of thermal treatment conditions on capacitive deionization performance and charge efficiency of carbon electrodes, Sep. Purif. Technol., 202 (2018) 67–75.
  11. T.Y. Ying, K. Yang, S. Yiacoumi, C. Tsouris, Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel, Colloid Interface Sci., 250 (2002) 18–27.
  12. X. Gao, A. Omosebi, J. Landon, K. Liu, Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes, Environ. Sci. Technol., 49 (2015) 10920–10926.
  13. C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems, Electrochim. Acta, 299 (2019) 727–735.
  14. K. Wang, Y. Liu, Z. Ding, Y. Li, T. Lu, L. Pan, Metal-organic frameworks derived NaTi2(PO4)3/carbon composite for efficient hybrid capacitive deionization, J. Mater. Chem. A, 7 (2019) 12126–12133.
  15. S. Kim, J. Lee, C. Kim, J. Yoon, Na2FeP2O7 as a novel material for hybrid capacitive deionization, Electrochim. Acta, 203 (2016) 265–271.
  16. F. Yang, J. Ma, X. Zhang, X. Huang, P. Liang, Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance, Water Res., 164 (2019) 1–7.
  17. W. Tang, J. Liang, D. He, J. Gong, L. Tang, Z. Liu, D. Wang, G. Zeng, Various cell architectures of capacitive deionization: recent advances and future trends, Water Res., 150 (2019) 225–251.
  18. G. Zhu, H. Wang, H. Xu, L. Zhang, Enhanced capacitive deionization by nitrogen-doped porous carbon nanofiber aerogel derived from bacterial-cellulose, J. Electroanal. Chem., 822 (2018) 81–88.
  19. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7 (2008) 845–854.
  20. A. Alfarra, E. Frackowiak, F. Béguin, Mechanism of lithium electrosorption by activated carbons, Electrochim. Acta, 47 (2002) 1545–1553.
  21. O. Soffer, The competing ideals of objectivity and dialogue in American journalism, Journalism, 10 (2009) 473–491.
  22. R.J. Caudle, P.J. Stern, Severe open fractures of the tibia, Chin. J. Tradit. Med. Traumatol. Orthop., 69 (1987) 801–807.
  23. C.R. Johnson, M. Newman, A condition for diagonalizability of a partitioned matrix, J. Res. Nat. Bur. Stand., 79 (1975) 45–48.
  24. N.L. Liu, S.H. Sun, C.H. Hou, Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization, Sep. Purif. Technol., 215 (2019) 403–409.
  25. J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes, J. Appl. Electrochem., 26 (1996) 1007–1018.
  26. J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive Deionization with Carbon Aerogel Electrodes: Carbonate, Sulfate, and Phosphate, 27 International Technical Conference of the Society for the Advancement of Material and Process Engineering: Diversity into the Next Century, Lawrence Livermore National Laboratory, CA, USA, 1995, pp. 595–599.
  27. R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn, Carbon aerogels for electrochemical applications, J. Non-Cryst. Solids, 225 (1998) 74–80.
  28. L. Wang, M. Wang, Z. Huang, T. Cui, X. Gui, F. Kang, K. Wang, D. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 21 (2011) 18295–18299.
  29. H. Li, L. Zou, L. Pan, Z. Sun, Novel graphene-like electrodes for capacitive deionization, Environ. Sci. Technol., 44 (2010) 8692–8697.
  30. D. Zhang, X. Wen, L. Shi, T. Yan, J. Zhang, Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale, 4 (2012) 5440–5448.
  31. Y. Cheng, Z. Hao, C. Hao, Y. Deng, X. Li, K. Li, Y. Zhao, A review of modification of carbon electrode material in capacitive deionization, RSC Adv., 9 (2019) 24401–24419.
  32. P. Srimuk, L. Ries, M. Zeiger, S. Fleischmann, N. Jäckel, A. Tolosa, B. Krüner, M. Aslan, V. Presser, High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water, RSC Adv., 6 (2016) 106081–106089.
  33. S. Hand, R.D. Cusick, Characterizing the impacts of deposition techniques on the performance of MnO2 cathodes for sodium electrosorption in hybrid capacitive deionization, Environ. Sci. Technol., 51 (2017) 12027–12034.
  34. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  35. L. Wang, Research on Technologies of Water Saving and Zero Discharge for Circulating Cooling Water in Power Plant, North China Electric Power University, 2016.
  36. Z.W. Zhu, Experimental Research on the Dosing Performance of Circulating Cooling Water in Estuary Water, North China Electric Power University, 2019.
  37. G. Topcu, A. Celik, A. Kandemir, A. Baba, H. Sahin, M.M. Demir, Increasing solubility of metal silicates by mixed polymeric antiscalants, Geothermics, 77 (2019) 106–114.
  38. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2017.
  39. F. Jia, Z. Li, Q. Dong, Present situation and development of scale inhibitor for industrial circulating cooling water, Ind. Water Treat., 26 (2006) 12–14.
  40. J.B. Lee, K. Park, H. Eum, C. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196 (2006) 125–134.
  41. J. Pan, W. Zheng, M.C. Zhang, Application of electrostatic water treatment technology in industrial circulation cooling water treatment, Mod. Manuf., 21 (2014) 88–89.
  42. Z.D. Pan, Research on Combined Biological Filter and Active Media Filter for Circulating Cooling Sewage Treatment, Tsinghua University, 2016.
  43. A.M. Zhu, H.K. Teng, S.Z. Zheng, J. Chen, L. Tao, Treatment of the wastewater discharged from circulating cooling system with electrodialyser, Ind. Water Treat., 32 (2012) 22–25.
  44. P.F. Cai, C.J. Su, W.T. Chang, F.C. Chang, C.Y. Peng, I. Sun, Y.L. Wei, C.J. Jou, H.P. Wang, Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene, Mar. Pollut. Bull., 85 (2014) 733–737.
  45. J. Sun, J. Wang, R. Zhang, D. Wei, Q. Long, Y. Huang, X. Xie, A. Li, Comparison of different advanced treatment processes in removing endocrine disruption effects from municipal wastewater secondary effluent, Chemosphere, 168 (2017) 1–9.
  46. Z. Huang, L. Lu, Z. Cai, Z.J. Ren, Individual and competitive removal of heavy metals using capacitive deionization, J. Hazard. Mater., 302 (2016) 323–331.
  47. C. Zhao, L. Zhang, R. Ge, A. Zhang, C. Zhang, X. Chen, Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology, Chemosphere, 217 (2019) 763–772.
  48. M. Nainamalai, M. Palani, B. Soundarajan, A. Ebinesar J.S.S, Decolorization of synthetic dye wastewater using packed bed electro-adsorption column, Chem. Eng. Process., 130 (2018) 160–168.
  49. G. Huang, T. Chen, S. Hsu, Y. Huang, S. Chuang, Capacitive deionization (CDI) for removal of phosphate from aqueous solution, Desal. Water Treat., 52 (2014) 759–765.
  50. Y. Liu, J. Zhou, J. Wang, Study on the treatment of circulating water: PPy/PAN-based activated carbon fiber felt composite as electro-adsorption electrode, J. New Mater. Electrochem. Syst., 18 (2015) 1–4.
  51. S. Ma, L. Ma, G. Chen, J. Chen, M. Wu, Experimental study on desalination using electro-sorption technology with plate-type activated carbon fiber electrode, Desal. Water Treat., 126 (2018) 116–126.
  52. J. Liu, F.L. Xie, P. Zhang, Experimental research on the application of electrosorption technique to wastewater treatment in power plants, Ind. Water Treat., 35 (2015) 68–71.
  53. S. Shen, X. Feng, G. Shi, Feasibility study on application of electroadsorption technique in circulating cooling water treatment in thermal power plant, Zhejiang Electric Power, 34 (2015) 89–99.
  54. Y.H. Li, Application of CDI technology in treatment of sewage discharged from circulating cooling water system, Ind. Wastewaters Water., 43 (2012) 71–73.
  55. F.A. Almarzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal, Application of capacitive deionisation in water desalination: a review, Desalination, 342 (2014) 3–15.
  56. M. Qin, A. Deshmukh, R. Epsztein, S.K. Patel, O.M. Owoseni, W.S. Walker, M. Elimelech, Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis, Desalination, 455 (2019) 100–114.
  57. C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: a review, Water Res., 128 (2018) 314–330.
  58. D. Lu, W. Cai, Y. Wang, Optimization of the voltage window for long-term capacitive deionization stability, Desalination, 424 (2017) 53–61.
  59. S. Porada, M. Bryjak, A. van der Wal, P.M. Biesheuvel, Effect of electrode thickness variation on operation of capacitive deionization, Electrochim. Acta, 75 (2012) 148–156.
  60. X. Liu, J.F. Whitacre, M.S. Mauter, Mechanisms of humic acid fouling on capacitive and insertion electrodes for electrochemical desalination, Environ. Sci. Technol., 52 (2018) 12633–12641.
  61. N. Manninen, H. Soinne, R. Lemola, L. Hoikkala, E. Turtola, Effects of agricultural land use on dissolved organic carbon and nitrogen in surface runoff and subsurface drainage, Sci. Total Environ., 618 (2018) 1519–1528.
  62. M.E. Suss, V. Presser, Water desalination with energy storage electrode materials, Joule, 2 (2018) 10–15.