References

  1. A. Giwa, V. Dufour, F. Al Marzooqi, M. Al Kaabi, S.W. Hasan, Brine management methods: recent innovations and current status, Desalination, 407 (2017) 1–23.
  2. E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang, The state of desalination and brine production: a global outlook, Sci. Total Environ., 657 (2019) 1343–1356.
  3. M. Molinos-Senante, D. González, Evaluation of the economics of desalination by integrating greenhouse gas emission costs: an empirical application for Chile, Renewable Energy, 133 (2019) 1327–1337.
  4. N. Baumgärtner, R. Delorme, M. Hennen, A. Bardow, Design of low-carbon utility systems: exploiting time-dependent grid emissions for climate-friendly demand-side management, Appl. Energy, 247 (2019) 755–765.
  5. A. Hossam-Eldin, A.M. El-Nashar, A. Ismaiel, Investigation into economical desalination using optimized hybrid renewable energy system, Int. J. Electr. Power Energy Syst., 43 (2012) 1393–1400.
  6. E. Koutroulis, D. Kolokotsa, Design optimization of desalination systems power-supplied by PV and W/G energy sources, Desalination, 258 (2010) 171–181.
  7. A. Subramani, J.G. Jacangelo, Treatment technologies for reverse osmosis concentrate volume minimization: a review, Sep. Purif. Technol., 122 (2014) 472–489.
  8. A. Panagopoulos, K.-J. Haralambous, M. Loizidou, Desalination brine disposal methods and treatment technologies – a review, Sci. Total Environ., 693 (2019) 133545.
  9. K.G. Nayar, J. Fernandes, R.K. McGovern, B.S. Al-Anzi, J.H. Lienhard V, Cost and energy needs of RO-ED-crystallizer systems for zero brine discharge seawater desalination, Desalination, 457 (2019) 115–132.
  10. N.I. Nwulu, X.H. Xia, Optimal dispatch for a microgrid incorporating renewables and demand response, Renewable Energy, 101 (2017) 16–28.
  11. U. Damisa, N.I. Nwulu, Y.X. Sun, Microgrid energy and reserve management incorporating prosumer behind-the-meter resources, IET Renewable Power Gener., 12 (2018) 910–919.
  12. B.S. Borowy, Z.M. Salameh, Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system, IEEE Trans. Energy Convers., 11 (1996) 367–375.
  13. A. Maleki, M.G. Khajeh, M.A. Rosen, Weather forecasting for optimization of a hybrid solar-wind-powered reverse osmosis water desalination system using a novel optimizer approach, Energy, 114 (2016) 1120–1134.
  14. W.X. Peng, A. Maleki, M.A. Rosen, P. Azarikhah, Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: comparison of approaches, Desalination, 442 (2018) 16–31.
  15. A.M. Abdelshafy, H. Hassan, J. Jurasz, Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO–GWO approach, Energy Convers. Manage., 173 (2018) 331–347.
  16. B.J. Wu, A. Maleki, F. Pourfayaz, M.A. Rosen, Optimal design of stand-alone reverse osmosis desalination driven by a photovoltaic and diesel generator hybrid system, Sol. Energy, 163 (2018) 91–103.
  17. K.G. Nayar, J. Fernandes, R.K. McGovern, K.P. Dominguez, A. McCance, B.S. Al-Anzi, J.H. Lienhard V, Cost and energy requirements of hybrid RO and ED brine concentration systems for salt production, Desalination, 456 (2019) 97–120.
  18. E. Dehnavi, H. Abdi, Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem, Energy, 109 (2016) 1086–1094.
  19. U.K. Kesieme, N. Milne, H. Aral, C.Y. Cheng, M. Duke, Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation, Desalination, 323 (2013) 66–74.
  20. M. Brander, A. Sood, C. Wylie, A. Haughton, J. Lovell, Electricity- Specific Emission Factors for Grid Electricity, Ecometrica, 2011, pp. 1–22. Available at: https://ecometrica.com/assets/Electricityspecific-emission-factors-for-grid-electricity.pdf
  21. National Treasury, Republic of South Africa: Media Statement Publication of the 2019 Carbon Tax Act, 2019, pp. 10–13 Available at: http://www.treasury.gov.za.
  22. L.G. Acuña, M. Lake, R.V. Padilla, Y.Y. Lim, E.G. Ponzón, Y.C. Soo Too, Modelling autonomous hybrid photovoltaicwind energy systems under a new reliability approach, Energy Convers. Manage., 172 (2018) 357–369.
  23. M.A. Al-Obaidi, G. Filippini, F. Manenti, I.M. Mujtaba, Cost evaluation and optimisation of hybrid multi effect distillation and reverse osmosis system for seawater desalination, Desalination, 456 (2019) 136–149.
  24. C. Koroneos, A. Dompros, G. Roumbas, Renewable energy driven desalination systems modelling, J. Cleaner Prod., 15 (2007) 449–464.
  25. Eskom, Schedule of Standard Prices for Eskom Tariffs 1 April 2019 to 31 March 2020 for Non-Local Authority Supplies, and 1 July 2019 to 30 June 2020 for Local Authority Supplies, 2019, pp. 1–48. Available at: http://www.eskom.co.za/CustomerCare/TariffsAndCharges/Documents/Eskom%20schedule%20of%20 standard%20prices%202019_20%20Rev00%20%28full%20 version%20excl%20Transflex%29.pdf
  26. C.D. Swartz, J.A. Du Plessis, A.J. Burger, G. Offringa, A desalination guide for South African municipal engineers, Water SA, 3 (2006) 641–647.
  27. T. Goga, E. Friedrich, C.A. Buckley, A LCA (Life Cycle Assessment) Comparison of Wastewater Reclamation and Desalination for the Ethekwini Municipality – A Theoretical Study, 2015. Available at: http://prg.ukzn.ac.za/docs/defaultsource/ projects/wisa_2016-paper_taahira.pdf?sfvrsn=2
  28. Water and Sanitation Department City of Cape Town, Water Outlook 2018 Report, 2018, pp. 1–5. Available at: https://resource. capetown.gov.za/documentcentre/Documents/City%20 research%20reports%20and%20review/Water%20Outlook%20 2018%20-%20Summary.pdf
  29. E.J. Okampo, N.I. Nwulu, Optimal energy mix for a reverse osmosis desalination unit considering demand response, J. Eng. Des. Technol., (2020) 1726–0531, doi: 10.1108/JEDT-01-2020-0025.