1. I. Azreen, A.Y. Zahrim, Overview of Biologically Digested Leachate Treatment Using Adsorption, N. Horan, A.Z. Yaser, N. Wid, Eds., Anaerobic Digestion Processes: Applications and Effluent Treatment, Springer, Singapore, 2018, pp. 123–148.
  2. L. Miao, G.Q. Yang, T. Tao, Y.Z. Peng, Recent advances in nitrogen removal from landfill leachate using biological treatments – a review, J. Environ. Manage., 235 (2019) 178–185.
  3. V.L. Pham, D.-G. Kim, S.-O. Ko, Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate, Chemosphere, 191 (2018) 639–650.
  4. A.A. Abbas, G. Jingsong, L.Z. Ping, P.Y. Ya, W.S. Al-Rekabi, Review on landfill leachate treatments, J. Appl. Sci. Res., 5 (2009) 534–545.
  5. W. Li, T. Hua, Q.X. Zhou, S.G. Zhang, F.X. Li, Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption, Desalination, 264 (2010) 56–62.
  6. Z.-Y. Xu, G.-M. Zeng, Z.-H. Yang, Y. Xiao, M. Cao, H.-S. Sun, L.-L. Ji, Y. Chen, Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification, Bioresour. Technol., 101 (2010) 79–86.
  7. J. Pichtel, Waste Management Practices: Municipal, Hazardous, and Industrial, CRC Press, Boca Raton, 2005.
  8. S.L. Huo, B.D. Xi, H.C. Yu, L.S. He, S.L. Fan, H.L. Liu, Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages, J. Environ. Sci., 20 (2008) 492–498.
  9. P. Kjeldsen, M.A. Barlaz, A.P. Rooker, A. Baun, A. Ledin, T.H. Christensen, Present and long-term composition of MSW landfill leachate: a review, Crit. Rev. Env. Sci. Technol., 32 (2002) 297–336.
  10. T.H. Christensen, R. Cossu, R. Stegmann, Landfilling of Waste: Leachate, CRC Press, Abingdon, 2005.
  11. N. Calace, A. Liberatori, B.M. Petronio, M. Pietroletti, Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals, Environ. Pollut., 113 (2001) 331–339.
  12. N. Calace, B.M. Petronio, Characterization of high molecular weightorganic compounds in landfill leachate:humic substances, J. Environ. Sci. Health. Part A Environ. Sci. Eng. Toxicol., 32 (1997) 2229–2244.
  13. R. Poblete, N. Pérez, Use of sawdust as pretreatment of photo- Fenton process in the depuration of landfill leachate, J. Environ. Manage., 253 (2020) 109697.
  14. J. Feng, B. Xing, H.L. Chen, Catalytic ozonation of humic acid in water with modified activated carbon: enhancement and restoration of the activity of an activated carbon catalyst, J. Environ. Manage., 237 (2019) 114–118.
  15. T. Walker, Managing Leachate at Different Landfills Across the US: Perspectives From an Owner, EREF Regional Summit on Leachate Management, Philadelphia, PA, 2013.
  16. K. Torrens, Leachate Management Decision Making & Available Technologies, EREF Regional Summit on Leachate Management, Philadelphia, PA, 2013.
  17. E.S.K. Chian, F.B. Dewalle, Sanitary landfill leachates and their leachate treatment, J. Environ. Eng. Div., 102 (1976) 411–431.
  18. S. Ho, W.C. Boyle, R.K. Ham, Chemical treatment of leachates from sanitary landfills, J. Water Pollut. Control Fed., 46 (1974) 1776–1791.
  19. W.C. Boyle, R.K. Ham, Biological treatability of landfill leachate, J. Water Pollut. Control Fed., 46 (1974) 860–872.
  20. S.-M. Kim, S.-U. Geissen, A. Vogelpohl, Landfill leachate treatment by a photoassisted fenton reaction, Water Sci. Technol., 35 (1997) 239–248.
  21. Y. Deng, Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate, J. Hazard. Mater., 146 (2007a) 334–340.
  22. M. Steensen, Chemical oxidation for the treatment of leachate -process comparison and results from full-scale plants, Water Sci. Technol., 35 (1997) 249–256.
  23. N.H. Ince, Light-enhanced chemical oxidation for tertiary treatment of municipal landfill leachate, Water Environ. Res., 70 (1998) 1161–1169.
  24. G.B. Gholikandi, N. Zakizadeh, H. Masihi, Application of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes: a comparative study, J. Environ. Manage., 206 (2018) 523–531.
  25. V. Markou, M.-C. Kontogianni, Z. Frontistis, A.G. Tekerlekopoulou, A. Katsaounis, D. Vayenas, Electrochemical treatment of biologically pre-treated dairy wastewater using dimensionally stable anodes, J. Environ. Manage., 202 (2017) 217–224.
  26. V. Leifeld, T.P.M. dos Santos, D.W. Zelinski, L. Igarashi-Mafra, Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater, J. Environ. Manage., 222 (2018) 284–292.
  27. Y. Deng, R.Z. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  28. M. Kurian, D.S. Nair, Manganese zinc ferrite nanoparticles as efficient catalysts for wet peroxide oxidation of organic aqueous wastes, J. Chem. Sci., 127 (2015) 537–546.
  29. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, J. Environ. Manage., 219 (2018) 189–207.
  30. Y.H. Ma, F. Chen, Q. Yang, Y. Zhong, X.Y. Shu, F.B. Yao, T. Xie, X.M. Li, D.B. Wang, G.M. Zeng, Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate, J. Environ. Manage., 227 (2018) 406–414.
  31. Z.M. Liu, X. Li, Z.W. Rao, F.P. Hu, Treatment of landfill leachate biochemical effluent using the nano-Fe3O4/Na2S2O8 system: oxidation performance, wastewater spectral analysis, and activator characterization, J. Environ. Manage., 208 (2018) 159–168.
  32. R. Anjali, S. Shanthakumar, Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes, J. Environ. Manage., 246 (2019) 51–62.
  33. N. Nasuha, S. Ismail, B.H. Hameed, Activated electric arc furnace slag as an effective and reusable Fenton-like catalyst for the photodegradation of methylene blue and acid blue 29, J. Environ. Manage., 196 (2017) 323–329.
  34. E. GilPavas, I. Dobrosz-Gómez, M.Á. Gómez-García, Coagulation-flocculation sequential with Fenton or photo-Fenton processes as an alternative for the industrial textile wastewater treatment, J. Environ. Manage., 191 (2017) 189–197.
  35. S.S. Rezaei, E. Dehghanifard, M. Noorisepehr, K. Ghadirinejad, B. Kakavandi, A.R. Esfahani, Efficient clean-up of waters contaminated with diazinon pesticide using photodecomposition of peroxymonosulfate by ZnO decorated on a magnetic core/shell structure, J. Environ. Manage., 250 (2019) 109472.
  36. Y. Deng, Advanced oxidation processes (AOPs) for reduction of organic pollutants in landfill leachate: a review, Int. J. Environ. Waste Manage., 4 (2009) 366–384.
  37. S.K. Singh, W.Z. Tang, Statistical analysis of optimum Fenton oxidation conditions for landfill leachate treatment, Waste Manage., 33 (2013) 81–88.
  38. J.F. Pérez, J. Llanos, C. Sáez, C. López, P. Cañizares, M.A. Rodrigo, Treatment of real effluents from the pharmaceutical industry: a comparison between Fenton oxidation and conductivediamond electro-oxidation, J. Environ. Manage., 195 (2017) 216–223.
  39. Google Earth Software, Güngör Sanitary Landfill Area, Google Inc., USA, 2019. Available at:
  40. R. Poblete, I. Oller, M.I. Maldonado, E. Cortes, Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes, J. Environ. Manage., 232 (2019) 45–51.
  41. D. Kumar, B.J. Alappat, Evaluating leachate contamination potential of landfill sites using leachate pollution index, Clean Technol. Environ. Policy, 7 (2005) 190–197.
  42. B. Langlais, D.A. Reckhow, D.R. Brink, Ozone in Water Treatment: Application and Engineering, Routledge, New York, 2019.
  43. W.Z. Tang, Physicochemical Treatment of Hazardous Wastes, CRC Press, Boca Raton, Florida, 2003.
  44. A. Goi, Y. Veressinina, M. Trapido, Combination of ozonation and the fenton processes for landfill leachate treatment: evaluation of treatment efficiency, Ozone Sci. Eng., 31 (2009) 28–36.
  45. Y. Qi, Ozonation of water and waste water: a practical guide to understanding ozone and its applications, Int. J. Environ. Stud., 67 (2010) 795–796.
  46. J.B. St. Laurent, F. de Buzzaccarini, K. De Clerck, H. Demeyere, R. Labeque, R. Lodewick, L. van Langenhove, B.1.I – Laundry Cleaning of Textiles, I. Johansson, P. Somasundaran, Eds., Handbook for Cleaning/Decontamination of Surfaces, Elsevier, Netherlands, 2007, pp. 57–102.
  47. N.-O. Nilvebrant, M. Björklund Jansson, Hydroxyl Radical Formation During Hydrogen Peroxide Bleaching, STFIPackforsk, Report No. 197, Stockholm, 2005.
  48. Y. Deng, J.D. Englehardt, Treatment of landfill leachate by the Fenton process, Water Res., 40 (2006) 3683–3694.
  49. S. Cortez, P. Teixeira, R. Oliveira, M. Mota, Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments, J. Environ. Manage., 92 (2011) 749–755.
  50. R.J. Bigda, Consider Fenton’s chemistry for wastewater treatment, Chem. Eng. Prog., 91 (1995) 62–66.
  51. H. Gulsen, M. Turan, Treatment of sanitary landfill leachate using a combined anaerobic fluidized bed reactor and Fenton’s oxidation, Environ. Eng. Sci., 21 (2004) 627–636.
  52. H. Zhang, H.J. Choi, C.-P. Huang, Optimization of Fenton process for the treatment of landfill leachate, J. Hazard. Mater., 125 (2005) 166–174.
  53. D.L. Sedlak, A.W. Andren, Oxidation of chlorobenzene with Fenton’s reagent, Environ. Sci. Technol., 25 (1991) 777–782.
  54. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O− in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  55. H. Zhang, H.J. Choi, C.-P. Huang, Treatment of landfill leachate by Fenton’s reagent in a continuous stirred tank reactor, J. Hazard. Mater., 136 (2006) 618–623.
  56. P. Wang, I.W.C. Lau, H.H.P. Fang, D. Zhou, Landfill leachate treatment with combined UASB and fenton coagulation, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 35 (2000) 1981–1988.
  57. Y. Deng, Physicochemical Removal of Organic Contaminants in Municipal Landfill Leachate, Landfill Research Focus, Nova Science Publishers, New York, 2007b, pp. 5–26.
  58. Y.W. Kang, K.-Y. Hwang, Effects of reaction conditions on the oxidation efficiency in the Fenton process, Water Res., 34 (2000) 2786–2790.
  59. I.W. Lau, P. Wang, H.H.P. Fang, Organic removal of anaerobically treated leachate by Fenton coagulation, J. Environ. Eng., 127 (2001) 666–669.
  60. J. Yoon, S. Cho, Y. Cho, S. Kim, The characteristics of coagulation of fenton reaction in the removal of landfill leachate organics, Water Sci. Technol., 38 (1998) 209–214.
  61. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8 (2004) 501–551.
  62. F. Haber, J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. A-Math. Phys. Eng. Sci., 147 (1934) 332–351.
  63. D. Hermosilla, M. Cortijo, C.P. Huang, Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes, Sci. Total Environ., 407 (2009) 3473–3481.
  64. S.G. Cetinkaya, M.H. Morcali, S. Akarsu, C.A. Ziba, M. Dolaz, Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater, Sustainable Environ. Res., 28 (2018) 165–170.
  65. X.L. Hu, X.F. Wang, Y.X. Ban, B. Ren, A comparative study of UV–Fenton, UV–H2O2 and Fenton reaction treatment of landfill leachate, Environ. Technol., 32 (2011) 945–951.
  66. A.E. Papadopoulos, D. Fatta, M. Loizidou, Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load, J. Hazard. Mater., 146 (2007) 558–563.
  67. M. Sillanpää, M.C. Ncibi, A. Matilainen, Advanced oxidation processes for the removal of natural organic matter from drinking water sources: a comprehensive review, J. Environ. Manage., 208 (2018) 56–76.