1. K. Hagos, J. Zong, D. Li, C. Liu, X. Lu, Anaerobic co-digestion process for biogas production: progress, challenges and perspectives, Renewable Sustainable Energy Rev., 76 (2017) 1485–1496.
  2. P. Kumaran, D. Hephzibah, R. Sivasankari, N. Saifuddin, A.H. Shamsuddin, A review on industrial scale anaerobic digestion systems deployment in Malaysia: opportunities and challenges, Renewable Sustainable Energy Rev., 56 (2016) 929–940.
  3. M. Maaz, M. Yasin, M. Aslam, G. Kumar, A.E. Atabani, M. Idrees, F. Anjum, F. Jamil, R. Ahmad, A.L. Khan, G. Lesage, M. Heran, J. Kim, Anaerobic membrane bioreactors for wastewater treatment: novel configurations, fouling control and energy considerations, Bioresour. Technol., 283 (2019) 358–372.
  4. H.H.P. Fang, Environmental Anaerobic Technology– Applications and New Developments, Imperial College Press, 2010.
  5. Z. Zahan, M.Z. Othman, W. Rajendram, Anaerobic codigestion of municipal wastewater treatment plant sludge with food waste: a case study, Biomed Res. Int., 2016 (2016) 1–13.
  6. M.F. Osman, Personal Communication, Selangor, Malaysia, August 2018.
  7. J. Kuo, J. Dow, Biogas production from anaerobic digestion of food waste and relevant air quality implications, J. Air Waste Manage. Assoc., 67 (2017) 1000–1011.
  8. J.H. Long, T.N. Aziz, F.L. de los Reyes III, J.J. Ducoste, Anaerobic co-digestion of fat, oil, and grease (FOG): a review of gas production and process limitations, Process Saf. Environ. Prot., 90 (2012) 231–245.
  9. E. Klaucans, K. Sams, Problems with fat, oil, and grease (FOG) in food industry wastewaters and recovered FOG recycling methods using anaerobic co-digestion: a short review, Key Eng. Mater., 762 (2018) 61–68.
  10. D. Brown, Y. Li, Solid state anaerobic co-digestion of yard waste and food waste for biogas production, Bioresour. Technol., 127 (2013) 275–280.
  11. T. Forster-Carneiro, M. Pérez, L.I. Romero, Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste, Bioresour. Technol., 99 (2008) 6994–7002.
  12. A. Mudhoo, Biogas Production: Pretreatment for Enhanced Anaerobic Digestio, Scrivener Publisher, New Jersey, 2012.
  13. S.B. Mahat, R. Omar, A. Idris, S.M. Mustapa Kamal, A.I. Mohd Idris, Dynamic membrane applications in anaerobic and aerobic digestion for industrial wastewater: a mini review, Food Bioprod. Process., 112 (2018) 150–168.
  14. N.S.A. Mutamim, Z.Z. Noor, M.A.A. Hassan, A. Yuniarto, G. Olsson, Membrane bioreactor: applications and limitations in treating high strength industrial wastewater, Chem. Eng. J., 225 (2013) 109–119.
  15. N. Rasit, A. Idris, R. Harun, W.A.W.A.K. Ghani, Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: an overview, Renewable Sustainable Energy Rev., 45 (2015) 351–358.
  16. M.H. Gerardi, Wastewater Bacteria, John Wiley & Sons, Inc., Pennsylvania, 2006.
  17. M.M. Alves, J.A.M. Vieira, R.M.A. Pereira, M.A. Pereira, M. Mota, Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors, Part II: oleic acid toxicity and biodegradability, Water Res., 35 (2001) 264–270.
  18. R. Rodríguez-méndez, Y.L. Bihan, F. Béline, P. Lessard, Long chain fatty acids (LCFA) evolution for inhibition forecasting during anaerobic treatment of lipid-rich wastes : case of milkfed veal slaughterhouse waste, Waste Manage., 67 (2017) 51–58.
  19. D.Z. Sousa, M.A. Pereira, A.J.M. Stams, M.M. Alves, H. Smidt, Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids, Appl. Environ. Microbiol., 73 (2007) 1054–1064.
  20. C. Gallert, J. Winter, Environmental Biotechnology: Bacterial Metabolism in Wastewater Treatment Systems, John Wiley and Sons, 2005, pp. 1–48.
  21. S. Luostarinen, S. Luste, M. Sillanpää, Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant, Bioresour. Technol., 100 (2009) 79–85.
  22. J.C. Kabouris, U. Tezel, S.G. Pavlostathis, M. Engelmann, J. Dulaney, R.A. Gillette, A.C. Todd, Methane recovery from the anaerobic codigestion of municipal sludge and FOG, Bioresour. Technol., 100 (2009) 3701–3705.
  23. C. Muller, P. Lam, E. Lin, T. Chapman, D. Devin-Clark, J. Belknap-Williamson, S. Krugel, Co-digestion at Annacis Island WWTP: metro Vancouver’s path to renewable energy and greenhouse gas emissions reductions, Proc. Water Environ. Fed., 14 (2010) 2706–2722.
  24. R.K. Dereli, B. Heffernan, A. Grelot, F.P. Van Der Zee, J.B. Van Lier, Influence of high lipid containing wastewater on filtration performance and fouling in AnMBRs operated at different solids retention times, Sep. Purif. Technol., 139 (2015) 43–52.
  25. C. Ramos, A. García, V. Diez, Performance of an AnMBR pilot plant treating high-strength lipid wastewater: biological and filtration processes, Water Res., 67 (2014) 203–215.
  26. F.M. Pellera, E. Gidarakos, Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste, J. Environ. Chem. Eng., 4 (2016) 3217–3229.
  27. P. Weiland, Biogas production : current state and perspectives, Appl. Microbiol. Biotechnol., 85 (2010) 849–860.
  28. R.M. Jingura, R. Kamusoko, Methods for determination of biomethane potential of feedstocks: a review, Biofuel Res. J., 4 (2017) 573–586.
  29. D.G. Mulat, J. Dibdiakova, S.J. Horn, Microbial biogas production from hydrolysis lignin: insight into lignin structural changes, Biotechnol. Biofuels, 11 (2018) 1–16.
  30. M.H. Gerardi, The Microbiology of Anaerobic Digesters: Mixing, John Wiley & Sons, Inc., New Jersey, 2003, p. 117–119.
  31. E. Kwietniewska, J. Tys, Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation, Renewable Sustainable Energy Rev., 34 (2014) 491–500.
  32. M. Kayhanian, Performance of a high‐solids anaerobic digestion process under various ammonia concentrations, J. Chem. Technol. Biotechnol., 59 (1994) 349–352.
  33. C.A.L. Chernicharo, Biological Wastewater Treatment Series Vol. 4: Anaerobic Reactors, London, New York, 2007.
  34. P.L. Mccarty, Anaerobic Waste Treatment Fundamentals Part Three: Toxic Materials and their Control, Public Work, Stanford, 1964, pp. 91–94.
  35. W.F. Owen, D.C. Stuckey, J.B. Healy, L.Y. Young, P.L. McCarty, Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Res., 13 (1979) 485–492.
  36. I.M. Nasir, Anaerobic Digestion for Cattle Manure Treatment and its Kinetic Modelling in an Oscillatory Flow Biogas Reactor, Universiti Putra Malaysia (UPM) Thesis, Malaysia, 2016.
  37. R. Nazaitulshila, A. Idris, R. Harun, W.A.W.A.K. Ghani, The influence of inoculum to substrate ratio on the biochemical methane potential of fat, oil, and grease in batch anaerobic assays, Energy Sources Part A, 37 (2015) 590–597.
  38. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, DC, 2005.
  39. A.V. Leena, C. Meiaraj, N. Balasundaram, BOD/COD a measure of dairy waste treatment efficiency–a case study, IOSR J. Mech. Civ. Eng., 13 (2016) 107–114.
  40. T.L. Hansen, J.E.Schmidt, I. Angelidaki, E. Marca, J.C. Jansen, H. Monsbaek, T.H. Christensen, Method for determination of methane potentials of solid organic waste, Waste Manage., 24 (2004) 393–400.
  41. C. Holliger, M.S. Alves, D. Andrade, I. Angelidaki, S. Astals, U. Baier, C. Bougrier, P. Buffière, M. Carballa, V. de Wilde, F. Ebertseder, B. Fernández, E. Ficara, I. Fotidis, J.-C. Frigon, H. Fruteau, D.S.M. Ghasimi, G. Hack, M. Hartel, J. Heerenklage, I.S. Horváth, P. Jenicek, K. Koch, J. Krautwald, J. Lizasoain, J. Liu, L. Mosberger, M. Nistor, H. Oechsner, J. Oliveira, M. Paterson, A. Pauss, P. Sébastien, I. Porqueddu, F. Raposo, T. Ribeiro, F. Rüsch, S. Strömberg, M. Torrijos, M.H.A. van Eekert, H. Wedwitschka, I. Wierinck, Towards a standardization of biomethane potential tests, Water Sci. Technol., 74 (2016) 2515–2522.
  42. I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, J.L. Campos, A.J. Guwy, S. Kalyuzhnyi, P. Jenicek, J.B. van Lier, Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Sci. Technol., 59 (2009) 927–934.
  43. N. Khairul Anuar, H. Che Man, S. Idrus, N.N. Nik Daud, Biochemical methane potential (BMP) from anaerobic codigestion of sewage sludge and decanter cake, IOP Conf. Ser. Mater. Sci. Eng., 368 (2018).
  44. A.M. Buswell, S.L. Neave, Laboratory Studies of Sludge Digestion, Bulletin No. 30, Illinois Division of State Water Survey, 1930.
  45. EQA, Sewage Characteristics and Effluent Discharge Requirements, Volume 4, Section 3, Malaysian Sewerage Industry Guidelines, Environmetal Quality Act, Malaysia, 1974.
  46. L. Moody, R. Burns, W. Wu-Haan, R. Spajić, Use of Biochemical Methane Potential (BMP) Assays for Predicting and Enhancing Anaerobic Digester Performance, Proceedings of the 44th Croatian and the 4th International Symposium on Agriculture, Opatija, Croatia, 16-20 February 2009.
  47. W.J. Gao, X. Qu, K.T. Leung, B.Q. Liao, Influence of temperature and temperature shock on sludge properties, cake layer structure, and membrane fouling in a submerged anaerobic membrane bioreactor, J. Membr. Sci., 421–422 (2012) 131–144.
  48. M.H. Gerardi, Wastewater Bioaugmentation and Biostimulation, DEStech Publications Inc., Pennsylvania, 2016.
  49. G.N. Demirer, S. Chen, Two-phase anaerobic digestion of unscreened dairy manure, Process Biochem., 40 (2005) 3542–3549.
  50. N.H.M. Yasin, T. Mumtaz, M.A. Hassan, N.A. Rahman, Food waste and food processing waste for biohydrogen production: a review, J. Environ. Manage., 130 (2013) 375–385.
  51. A. Khalid, M. Arshad, M. Anjum, T. Mahmood, L. Dawson, The anaerobic digestion of solid organic waste, Waste Manage., 31 (2011) 1737–1744.
  52. J.P.Y. Jokela, J.A. Rintala, Anaerobic solubilisation of nitrogen from municipal solid waste (MSW), Rev. Environ. Sci. Biotechnol., 2 (2003) 67–77.
  53. G. Vidal, A. Carvalho, R. Méndez, J.M. Lema, Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters, Bioresour. Technol., 74 (2000) 231–239.
  54. K. Fricke, H. Santen, R. Wallmann, A. Hu, N. Dichtl, N.O. Dinitrous, Operating problems in anaerobic digestion plants resulting from nitrogen in MSW, Waste Manage., 27 (2007) 30–43.
  55. O. Yenigün, B. Demirel, Ammonia inhibition in anaerobic digestion: a review, Process Biochem., 48 (2013) 901–911.
  56. Y. Chen, J.J. Cheng, K.S. Creamer, Inhibition of anaerobic digestion process: a review, Bioresour. Technol., 99 (2008) 4044–4064.
  57. M. Kayhanian, Ammonia inhibition in high-solids biogasification : an overview and practical solutions, Environ. Technol., 20 (1999) 355–365.
  58. Q. Niu, T. Hojo, W. Qiao, H. Qiang, Y.Y. Li, Characterization of methanogenesis, acidogenesis and hydrolysis in thermophilic methane fermentation of chicken manure, Chem. Eng. J., 244 (2014) 587–596.
  59. K. Shahot, A. Idris, R. Omar, H.M. Yusoff, Review on biofilm processes for wastewater treatment, Life Sci. J., 11 (2014) 1–13.
  60. R.P. Singh, S. Kumar, C.S. Ojha, Nutrient requirement for UASB process: a review, Biochem. Eng. J., 3 (1999) 35–54.
  61. P.H.L. Nguyen, P. Kuruparan, C. Visvanathan, Anaerobic digestion of municipal solid waste as a treatment prior to landfill, Bioresour. Technol., 98 (2007) 380–387.
  62. I.H. Franke-whittle, A. Walter, C. Ebner, H. Insam, Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities, Waste Manage., 34 (2014) 2080–2089.
  63. S.A. Silva, A.F. Salvador, A.J. Cavaleiro, M.A. Pereira, A.J.M. Stams, M.M. Alves, D.Z. Sousa, Toxicity of long chain fatty acids towards acetate conversion by Methanosaeta concilii and Methanosarcina mazei, Microbiol. Biotechnol., 9 (2016) 514–518.
  64. H. Galbraith, T.B. Miller, Physicochemical effects of long chain fatty acids on bacterial cells and their protoplasts, J. Appl. Microbiol., 36 (1973) 647–658.
  65. H.S. Shin, S.H. Kim, C.Y. Lee, S.Y. Nam, Inhibitory effects of long-chain fatty acids on VFA degradation and β-oxidation, Water Sci. Technol., 47 (2003) 139–146.
  66. M.A. Pereira, A. Cavaleiro, M. Mota, M.S. Alves, Accumulation of long chain fatty acids onto anaerobic sludge under steady state and shock loading conditions : effect on acetogenic and methanogenic activity, Water Sci. Technol., 48 (2003) 33–40.
  67. J.B. Bornare, U.S. Adhyapak, G.P. Minde, V.K. Raman, V.S. Sapkal, R.S. Sapkal, Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation, Water Sci. Technol., 71 (2015) 1654–1660.
  68. I. Angelidaki, J.E. Schmidt, L. Ellegaard, B.K. Ahring, Methods an automatic system for simultaneous monitoring of gas evolution in multiple closed vessels, J. Microbiol. Methods, 33 (1998) 93–100.
  69. M.S.S. Ibrahim, Treatment of Food Processing Industrial Wastewater Using Two Stages Anaerobic System, Thesis MSc. Faculty of Civil and Environmental Engineering Universiti Tun Hussein Onn Malaysia, Malaysia, 2014.
  70. P.G. Kougias, K. Boe, S.O.-Thong, L.A. Kristensen, I. Angelidaki, Anaerobic digestion foaming in full-scale biogas plants : a survey on causes and solutions, Water Sci. Technol., 69 (2014) 889–895.
  71. C. Li, P. Champagne, B.C. Anderson, Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions, Bioresour. Technol., 102 (2011) 9471–9480.
  72. R. Alkarimiah, S.B. Mahat, A. Yuzir, M.F.M. Din, S. Chelliapan, Performance of an innovative multi-stage anaerobic reactor during start-up period, Afr. J. Biotechnol., 10 (2011) 11294–11302.
  73. R.P. Rodrigues, D.P. Rodrigues, A. Klepacz-Smolka, R.C. Martins, M.J. Quina, Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates, Sci. Total Environ., 649 (2019) 1599–1608.
  74. J. Filer, H.H. Ding, S. Chang, Biochemical methane potential (BMP) assay method for anaerobic digestion research, Water, 11 (2019).
  75. M.S.S. Ibrahim, A. Aziz, A. Latiff, Z. Daud, Preliminary study : treatment of food industry wastewater using two-phase anaerobic treatment system, Int. J. Integr. Eng., 5 (2013) 1–7.