References
- H. Montigaud, B. Tanguy, G. Demazeau, I. Alves, S. Courjault,
C3N4: dream or reality? Solvothermal synthesis as macroscopic
samples of the C3N4 graphitic form, J. Mater. Sci., 35 (2000)
2547–2552.
- D.R. Miller, J. Wang, E.G. Gillan, Rapid facile synthesis of
nitrogen-rich carbon nitride powders, J. Mater. Chem., 12 (2002)
2463–2469.
- D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides,
Science, 271 (1996) 53–55.
- X.A. Zhao, C.W. Ong, Y.C. Tsang, Y.W. Wong, P.W. Chan,
C.L. Choy, Reactive pulsed laser deposition of CNx films, Appl.
Phys. Lett., 66 (1995) 2652–2654.
- Y. Zhang, H. Gao, Y. Gu, Structure studies of C3N4 thin films
prepared by microwave plasma chemical vapour deposition,
J. Phys. D: Appl. Phys., 34 (2001) 299–302.
- G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon
nitride (g-C3N4) material: electronic structure, photocatalytic
and photoelectronic properties, J. Photochem. Photobiol., C,
20 (2014) 33–50.
- M.L. Cohen, Calculation of bulk moduli of diamond and
zinc-blende solids, Phys. Rev. B, 32 (1985) 7988–7991.
- A.Y. Liu, M.L. Cohen, Prediction of new low compressibility
solids, Science, 245 (1989) 841–842.
- A.Y. Liu, M.L. Cohen, Structural properties and electronic
structure of low-compressibility materials: beta-Si3N4 and
hypothetical beta-C3N4, Phys. Rev. B, 41 (1990) 10727–10734.
- D.L. Jiang, L.L. Chen, J.J. Zhu, M. Chen, W.D. Shi, J.M. Xie,
Novel p-n heterojunction photocatalyst constructed by porous
graphite-like C3N4 and nanostructured BiO: facile synthesis
and enhanced photocatalytic activity, Dalton Trans., 42 (2013)
15726–15734.
- X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin,
J.M. Carlsson, A metal-free polymeric photocatalyst for
hydrogen production from water under visible light, Nat.
Mater., 8 (2009) 76–79.
- S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of
g-C3N4 fabricated by directly heating melamine, Langmuir,
25 (2009) 10397–10401.
- X. Dong, F. Cheng, Recent development in exfoliated twodimensional
g-C3N4 nanosheets for photocatalytic applications,
J. Mater. Chem. A, 3 (2015) 23642–23652.
- Y. Xu, S.-P. Gao, Bandgap of C3N4 in the GW approximation,
Int. J. Hydrogen Energy, 37 (2012) 11072–11080.
- Y. Zheng, L.H. Lin, X.J. Ye, F.S. Guo, X.C. Wang, Helical graphitic
carbon nitrides with photocatalytic and optical activities,
Angew. Chem. Int. Ed., 53 (2014) 11926–11930.
- M. Groenewolt, M. Antonietti, Synthesis of g-C3N4 nanoparticles
in mesoporous silica host matrices, Adv. Mater.,
17 (2005) 1789–1792.
- C.S. Pan, J. Xu, Y.J. Wang, D. Li, Y.F. Zhu, Dramatic activity of
C3N4/BiPO4 photocatalyst with core/shell structure formed by
self-assembly, Adv. Funct. Mater., 22 (2012) 1518–1524.
- S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B
and methyl orange over boron-doped g-C3N4 under visible light
irradiation, Langmuir, 26 (2010) 3894–3901.
- Y.J. Zhang, T. Mori, J.H. Ye, M. Antonietti, Phosphorusdoped
carbon nitride solid: enhanced electrical conductivity
and photocurrent generation, J. Am. Chem. Soc., 132 (2010)
6294–6295.
- L. Xu, J.X. Xia, H. Xu, J. Qian, J. Yan, L.G. Wang, K. Wang,
H.M. Li, AgX/graphite-like C3N4 (X = Br, I) hybrid materials for
photoelectrochemical determination of copper(II) ion, Analyst,
138 (2013) 6721–6726.
- Q. Liu, J.Y. Zhang, Graphene supported Co-g-C3N4 as a novel
metal macrocyclic electrocatalyst for the oxygen reduction
reaction in fuel cells, Langmuir, 29 (2013) 3821–3828.
- J. Wan, S.Z. Hu, F.Y. Li, Z.P. Fan, F. Wang, J. Zhang. Synthesis of
CL doped g-C3N4 with enhanced photocatalytic activity under
visible light, Asian J. Chem., 26 (2014) 8543–8546.
- C. Jack II, L. Jerrold B, Methylene blue, Am. J. Ther., 10 (2003)
289–91.
- M. Salhab, W. Al Sarakbi, K. Mokbel, Skin and fat necrosis of the
breast following methylene blue dye injection for sentinel node
biopsy in a patient with breast cancer, Int. Semin. Surg. Oncol.,
2 (2005) 26–29.
- I. Wærnhus, P.E. Vullum, R. Holmestad, T. Grande, K. Wiik,
Electronic properties of polycrystalline LaFeO3. Part I:
experimental results and the qualitative role of Schottky defects,
Solid State Ionics, 176 (2005) 2783–2790.
- T. Arima, Y. Tokura, J.B. Torrence, Variation of optical gaps
in perovskite-type 3d transition-metal oxides, Phys. Rev. B,
48 (1993) 17006–17009.
- A. Chainani, M. Mathew, D.D. Sarma, Electronic structure
of La1−xSrxFeO3, Phys. Rev. B, 48 (1993) 14818–14825.
- Y. Li, K. Lv, W. Ho, Z. Zhao, Y. Huang, Enhanced visible-light
photo-oxidation of nitric oxide using bismuth-coupled graphitic
carbon nitride composite heterostructures, Chin. J. Catal., 38
(2017) 321–329.
- J. Wen, J. Xie, Z. Yang, R. Shen, H. Li, X. Luo, X. Chen, X. Li,
Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple
heterojunctions for enhanced photocatalytic H2 generation:
an insight into the trifunctional roles of nano carbons, ACS
Sustainable Chem. Eng., 5 (2017) 2224–2236.
- J. Tauc, R. Grigorovici, A. Vaucu, Optical properties and
electronic structure of amorphous germanium, Phys. Status
Solidi B, 15 (1966) 627–637.
- I.S. Yahia, H.Y. Zahran, F.H. Alamri, Pyronin Y as new organic
semiconductors: structure, optical spectroscopy and electrical/dielectric properties, Synth. Met., 218 (2016) 19–26.
- H. Eskandarloo, A. Badiei, C. Haug, Enhanced photocatalytic
degradation of an azo textile dye by using TiO2/NiO coupled
nanoparticles: optimization of synthesis and operational key
factors, Mater. Sci. Semicond. Process., 27 (2014) 240–253.
- Y.P. Bhoi, B.G. Mishra, Photocatalytic degradation of alachlor
using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst
under visible light irradiation, Chem. Eng. J., 344
(2018) 391–401.
- I. Prabha, S. Lathasree, Photodegradation of phenol by zinc
oxide, titania and zinc oxide–titania composites: nanoparticle
synthesis, characterization and comparative photocatalytic
efficiencies, Mater. Sci. Semicond. Process., 26 (2014) 603–613.
- S. Waclawek, H.V. Lutze, K. Grubel, V.V.T. Padil, M. Cernik,
D.D. Dionysiou, Chemistry of persulfates in water and
wastewater treatment: a review, Chem. Eng. J., 330 (2017)
44–62.
- D.R. Shinde, P.S. Tambade, M.G. Chaskar, K.M. Gadave,
Photocatalytic degradation of dyes in water by analytical
reagent grades ZnO, TiO2 and SnO2: a comparative study,
Drinking Water Eng. Sci., 10 (2017) 109–117.
- Z. Jin, R. Hu, H. Wang, J. Hu, T. Ren, One-step impregnation
method to prepare direct Z-scheme LaCoO3/g-C3N4
heterojunction photocatalysts for phenol degradation under
visible light, Appl. Surf. Sci., 491 (2019) 432–442.
- B. Zhao, S. Ge, D. Pan, Q. Shao, J. Lin, Z. Wang, Z. Hu,
T. Wu, Z. Guo, Solvothermal synthesis, characterization and
photocatalytic property of zirconium dioxide doped titanium
dioxide spinous hollow microspheres with sunflower pollen as
bio-templates, J. Colloid Interface Sci., 529 (2018) 111–121.
- J. Yu, G. Dai, Q. Xiang, M. Jaroniec, Fabrication and enhanced
visible-light photocatalytic activity of carbon self-doped TiO2
sheets with exposed 001 facets, J. Mater. Chem., 21 (2011)
1049–1057.
- Q. Wang, H. Jiang, S. Zang, J. Li, Q. Wang, Gd, C, N and
P quaternary doped anatase-TiO2 nano-photocatalyst for
enhanced photocatalytic degradation of 4-chlorophenol under
simulated sunlight irradiation, J. Alloys Compd., 586 (2014)
411–419.
- T.K. Mandal, S.P.K. Malhotra, R.K. Singha, Photocatalytic
degradation of methylene blue in presence of ZnO nanopowders
synthesized through a green synthesized method, Rom. J.
Mater., 48 (2018) 32–38.
- M. Asadollahi-Baboli, Exploring QSTR analysis of the toxicity
of phenols and thiophenols using machine learning methods,
Environ. Toxicol. Pharmacol., 34 (2012) 826–831.
- D.P. Zagklis, A.I. Vavouraki, M.E. Kornaros, C.A. Paraskeva,
Purification of olive mill wastewater phenols through membrane
filtration and resin adsorption/desorption, J. Hazard. Mater.,
285 (2015) 69–76.
- Y. Huan, J. Min, H. Danlian, Z. Guangming, L. Cui, Q. Lei,
Z. Chengyun, L. Bisheng, L. Xigui, C. Min, X. Wenjing,
X.Z. Chen, Advanced photocatalytic Fenton-like process over
biomimetic hemin-Bi2WO6 with enhanced pH, J. Taiwan Inst.
Chem. Eng., 93 (2018)184–192.
- K. Li, Y. Liang, J. Yang, Q. Gao, Y. Zhu, S. Liu, R. Xu, X. Wu,
Controllable synthesis of {001} facet dependent foursquare
BiOCl nanosheets: a high efficiency photocatalyst for
degradation of methyl orange, J. Alloys Compd., 695 (2017)
238–249.
- Y. Yang, Z. Zeng, G. Zeng, D. Huang, R. Xiao, C. Zhang,
C. Zhou, W. Xiong, W. Wang, M. Cheng, W. Xue, H. Guo,
X. Tang, D. He, Ti3C2 Mxene/porous g-C3N4 interfacial Schottky
junction for boosting spatial charge separation in photocatalytic
H2O2 production, Appl. Catal., B, 258 (2019) 117956–117968.
- T.T.T. Dang, S.T.T. Le, D. Channe, W. Khanitchaidecha,
A. Nakaruk, Photodegradation mechanisms of phenol in
the photocatalytic process, Res. Chem. Intermed., 42 (2016)
5961–5974.
- Y. Ao, J. Bao, P. Wang, C. Wang, J. Hou, Bismuth oxychloride
modified titanium phosphate nanoplates: a new p-n type
heterostructured photocatalyst with high activity for the
degradation of different kinds of organic pollutants, J. Colloid
Interface Sci., 476 (2016) 71–78.
- N.K. Vel Leitner, M. Dore, Hydroxyl radical induced
decomposition of aliphatic acids in oxygenated and deoxygenated
aqueous solutions, J. Photochem. Photobiol., A, 99
(1996) 137–143.
- H. Yia, M. Yana, D. Huang, G. Zeng, C. Lai, M. Li, X. Huo,
L. Qin, S. Liu, X. Liu, B. Li, H. Wang, M. Shen, Y. Fu, X. Guo,
Synergistic effect of artificial enzyme and 2D nano-structured
Bi2WO6 for eco-friendly and effcient biomimetic photocatalysis,
Appl. Catal., B, 250 (2019) 52–62.
- I. Ali, S.-R. Kim, S.-P. Kim, J.-O. Kim, Anodization of bismuth
doped TiO2 nanotubes composite for photocatalytic degradation
of phenol in visible light, Catal. Today, 282 (2017) 31–37.