References

  1. H. Montigaud, B. Tanguy, G. Demazeau, I. Alves, S. Courjault, C3N4: dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form, J. Mater. Sci., 35 (2000) 2547–2552.
  2. D.R. Miller, J. Wang, E.G. Gillan, Rapid facile synthesis of nitrogen-rich carbon nitride powders, J. Mater. Chem., 12 (2002) 2463–2469.
  3. D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides, Science, 271 (1996) 53–55.
  4. X.A. Zhao, C.W. Ong, Y.C. Tsang, Y.W. Wong, P.W. Chan, C.L. Choy, Reactive pulsed laser deposition of CNx films, Appl. Phys. Lett., 66 (1995) 2652–2654.
  5. Y. Zhang, H. Gao, Y. Gu, Structure studies of C3N4 thin films prepared by microwave plasma chemical vapour deposition, J. Phys. D: Appl. Phys., 34 (2001) 299–302.
  6. G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties, J. Photochem. Photobiol., C, 20 (2014) 33–50.
  7. M.L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids, Phys. Rev. B, 32 (1985) 7988–7991.
  8. A.Y. Liu, M.L. Cohen, Prediction of new low compressibility solids, Science, 245 (1989) 841–842.
  9. A.Y. Liu, M.L. Cohen, Structural properties and electronic structure of low-compressibility materials: beta-Si3N4 and hypothetical beta-C3N4, Phys. Rev. B, 41 (1990) 10727–10734.
  10. D.L. Jiang, L.L. Chen, J.J. Zhu, M. Chen, W.D. Shi, J.M. Xie, Novel p-n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiO: facile synthesis and enhanced photocatalytic activity, Dalton Trans., 42 (2013) 15726–15734.
  11. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76–79.
  12. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir, 25 (2009) 10397–10401.
  13. X. Dong, F. Cheng, Recent development in exfoliated twodimensional g-C3N4 nanosheets for photocatalytic applications, J. Mater. Chem. A, 3 (2015) 23642–23652.
  14. Y. Xu, S.-P. Gao, Bandgap of C3N4 in the GW approximation, Int. J. Hydrogen Energy, 37 (2012) 11072–11080.
  15. Y. Zheng, L.H. Lin, X.J. Ye, F.S. Guo, X.C. Wang, Helical graphitic carbon nitrides with photocatalytic and optical activities, Angew. Chem. Int. Ed., 53 (2014) 11926–11930.
  16. M. Groenewolt, M. Antonietti, Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices, Adv. Mater., 17 (2005) 1789–1792.
  17. C.S. Pan, J. Xu, Y.J. Wang, D. Li, Y.F. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly, Adv. Funct. Mater., 22 (2012) 1518–1524.
  18. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuir, 26 (2010) 3894–3901.
  19. Y.J. Zhang, T. Mori, J.H. Ye, M. Antonietti, Phosphorusdoped carbon nitride solid: enhanced electrical conductivity and photocurrent generation, J. Am. Chem. Soc., 132 (2010) 6294–6295.
  20. L. Xu, J.X. Xia, H. Xu, J. Qian, J. Yan, L.G. Wang, K. Wang, H.M. Li, AgX/graphite-like C3N4 (X = Br, I) hybrid materials for photoelectrochemical determination of copper(II) ion, Analyst, 138 (2013) 6721–6726.
  21. Q. Liu, J.Y. Zhang, Graphene supported Co-g-C3N4 as a novel metal macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells, Langmuir, 29 (2013) 3821–3828.
  22. J. Wan, S.Z. Hu, F.Y. Li, Z.P. Fan, F. Wang, J. Zhang. Synthesis of CL doped g-C3N4 with enhanced photocatalytic activity under visible light, Asian J. Chem., 26 (2014) 8543–8546.
  23. C. Jack II, L. Jerrold B, Methylene blue, Am. J. Ther., 10 (2003) 289–91.
  24. M. Salhab, W. Al Sarakbi, K. Mokbel, Skin and fat necrosis of the breast following methylene blue dye injection for sentinel node biopsy in a patient with breast cancer, Int. Semin. Surg. Oncol., 2 (2005) 26–29.
  25. I. Wærnhus, P.E. Vullum, R. Holmestad, T. Grande, K. Wiik, Electronic properties of polycrystalline LaFeO3. Part I: experimental results and the qualitative role of Schottky defects, Solid State Ionics, 176 (2005) 2783–2790.
  26. T. Arima, Y. Tokura, J.B. Torrence, Variation of optical gaps in perovskite-type 3d transition-metal oxides, Phys. Rev. B, 48 (1993) 17006–17009.
  27. A. Chainani, M. Mathew, D.D. Sarma, Electronic structure of La1−xSrxFeO3, Phys. Rev. B, 48 (1993) 14818–14825.
  28. Y. Li, K. Lv, W. Ho, Z. Zhao, Y. Huang, Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures, Chin. J. Catal., 38 (2017) 321–329.
  29. J. Wen, J. Xie, Z. Yang, R. Shen, H. Li, X. Luo, X. Chen, X. Li, Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: an insight into the trifunctional roles of nano carbons, ACS Sustainable Chem. Eng., 5 (2017) 2224–2236.
  30. J. Tauc, R. Grigorovici, A. Vaucu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 15 (1966) 627–637.
  31. I.S. Yahia, H.Y. Zahran, F.H. Alamri, Pyronin Y as new organic semiconductors: structure, optical spectroscopy and electrical/dielectric properties, Synth. Met., 218 (2016) 19–26.
  32. H. Eskandarloo, A. Badiei, C. Haug, Enhanced photocatalytic degradation of an azo textile dye by using TiO2/NiO coupled nanoparticles: optimization of synthesis and operational key factors, Mater. Sci. Semicond. Process., 27 (2014) 240–253.
  33. Y.P. Bhoi, B.G. Mishra, Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation, Chem. Eng. J., 344 (2018) 391–401.
  34. I. Prabha, S. Lathasree, Photodegradation of phenol by zinc oxide, titania and zinc oxide–titania composites: nanoparticle synthesis, characterization and comparative photocatalytic efficiencies, Mater. Sci. Semicond. Process., 26 (2014) 603–613.
  35. S. Waclawek, H.V. Lutze, K. Grubel, V.V.T. Padil, M. Cernik, D.D. Dionysiou, Chemistry of persulfates in water and wastewater treatment: a review, Chem. Eng. J., 330 (2017) 44–62.
  36. D.R. Shinde, P.S. Tambade, M.G. Chaskar, K.M. Gadave, Photocatalytic degradation of dyes in water by analytical reagent grades ZnO, TiO2 and SnO2: a comparative study, Drinking Water Eng. Sci., 10 (2017) 109–117.
  37. Z. Jin, R. Hu, H. Wang, J. Hu, T. Ren, One-step impregnation method to prepare direct Z-scheme LaCoO3/g-C3N4 heterojunction photocatalysts for phenol degradation under visible light, Appl. Surf. Sci., 491 (2019) 432–442.
  38. B. Zhao, S. Ge, D. Pan, Q. Shao, J. Lin, Z. Wang, Z. Hu, T. Wu, Z. Guo, Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates, J. Colloid Interface Sci., 529 (2018) 111–121.
  39. J. Yu, G. Dai, Q. Xiang, M. Jaroniec, Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed 001 facets, J. Mater. Chem., 21 (2011) 1049–1057.
  40. Q. Wang, H. Jiang, S. Zang, J. Li, Q. Wang, Gd, C, N and P quaternary doped anatase-TiO2 nano-photocatalyst for enhanced photocatalytic degradation of 4-chlorophenol under simulated sunlight irradiation, J. Alloys Compd., 586 (2014) 411–419.
  41. T.K. Mandal, S.P.K. Malhotra, R.K. Singha, Photocatalytic degradation of methylene blue in presence of ZnO nanopowders synthesized through a green synthesized method, Rom. J. Mater., 48 (2018) 32–38.
  42. M. Asadollahi-Baboli, Exploring QSTR analysis of the toxicity of phenols and thiophenols using machine learning methods, Environ. Toxicol. Pharmacol., 34 (2012) 826–831.
  43. D.P. Zagklis, A.I. Vavouraki, M.E. Kornaros, C.A. Paraskeva, Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption, J. Hazard. Mater., 285 (2015) 69–76.
  44. Y. Huan, J. Min, H. Danlian, Z. Guangming, L. Cui, Q. Lei, Z. Chengyun, L. Bisheng, L. Xigui, C. Min, X. Wenjing, X.Z. Chen, Advanced photocatalytic Fenton-like process over biomimetic hemin-Bi2WO6 with enhanced pH, J. Taiwan Inst. Chem. Eng., 93 (2018)184–192.
  45. K. Li, Y. Liang, J. Yang, Q. Gao, Y. Zhu, S. Liu, R. Xu, X. Wu, Controllable synthesis of {001} facet dependent foursquare BiOCl nanosheets: a high efficiency photocatalyst for degradation of methyl orange, J. Alloys Compd., 695 (2017) 238–249.
  46. Y. Yang, Z. Zeng, G. Zeng, D. Huang, R. Xiao, C. Zhang, C. Zhou, W. Xiong, W. Wang, M. Cheng, W. Xue, H. Guo, X. Tang, D. He, Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production, Appl. Catal., B, 258 (2019) 117956–117968.
  47. T.T.T. Dang, S.T.T. Le, D. Channe, W. Khanitchaidecha, A. Nakaruk, Photodegradation mechanisms of phenol in the photocatalytic process, Res. Chem. Intermed., 42 (2016) 5961–5974.
  48. Y. Ao, J. Bao, P. Wang, C. Wang, J. Hou, Bismuth oxychloride modified titanium phosphate nanoplates: a new p-n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants, J. Colloid Interface Sci., 476 (2016) 71–78.
  49. N.K. Vel Leitner, M. Dore, Hydroxyl radical induced decomposition of aliphatic acids in oxygenated and deoxygenated aqueous solutions, J. Photochem. Photobiol., A, 99 (1996) 137–143.
  50. H. Yia, M. Yana, D. Huang, G. Zeng, C. Lai, M. Li, X. Huo, L. Qin, S. Liu, X. Liu, B. Li, H. Wang, M. Shen, Y. Fu, X. Guo, Synergistic effect of artificial enzyme and 2D nano-structured Bi2WO6 for eco-friendly and effcient biomimetic photocatalysis, Appl. Catal., B, 250 (2019) 52–62.
  51. I. Ali, S.-R. Kim, S.-P. Kim, J.-O. Kim, Anodization of bismuth doped TiO2 nanotubes composite for photocatalytic degradation of phenol in visible light, Catal. Today, 282 (2017) 31–37.