References

  1. K.-J. Hwang, J.-W. Lee, W.-G. Shim, H.D. Jang, S.-I. Lee, S.-J. Yoo, Adsorption and photocatalysis of nanocrystalline TiO2 particles prepared by sol–gel method for methylene blue degradation, Adv. Powder Technol., 23 (2012) 414–418.
  2. C. Wang, J. Zhu, X. Wu, H. Xu, Y. Song, J. Yan, Y. Song, H. Ji, K. Wang, H. Li, Photocatalytic degradation of bisphenol A and dye by graphene-oxide/Ag3PO4 composite under visible light irradiation, Ceram. Int., 40 (2014) 8061–8070.
  3. S. Adhikari, K. Sarath Chandra, D.-H. Kim, G. Madras, D. Sarkar, Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants, Adv. Powder Technol., 29 (2018) 1591–1600.
  4. F. Mohammadi, B. Bina, M.M. Amin, H.R. Pourzamani, Z. Yavari, M.R. Shams, Evaluation of the effects of Alkyl Phenolic compounds on kinetic parameters in a moving bed biofilm reactor, Can. J. Chem. Eng., 96 (2018) 1762–1769.
  5. A.M. Ghaedi, A. Vafaei, Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review, Adv. Colloid Interface Sci., 245 (2017) 20–39.
  6. M.M.M.M. Amin, B. Bina, K. Ebrahim, Z. Yavari, F. Mohammadi, Biodegradation of natural and synthetic estrogens in moving bed bioreactor, Chin. J. Chem. Eng., 26 (2018) 393–399.
  7. C.M. Dominguez, N. Oturan, A. Romero, A. Santos, M.A. Oturan, Removal of lindane wastes by advanced electrochemical oxidation, Chemosphere, 202 (2018) 400–409.
  8. P. He, L. Song, S. Zhang, X. Wu, Q. Wei, Synthesis of g-C3N4/Ag3PO4 heterojunction with enhanced photocatalytic performance, Mater. Res. Bull., 51 (2014) 432–437.
  9. C.-S. Kim, B.K. Moon, J.-H. Park, S. Tae Chung, S.-M. Son, Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route, J. Cryst. Growth, 254 (2003) 405–410.
  10. W.S. Nam, G.Y. Han, Characterization and photocatalytic performance of nanosize TiO2 powders prepared by the solvothermal method, Korean J. Chem. Eng., 20 (2003) 1149–1153.
  11. R. Djellabi, M.F. Ghorab, Solar photocatalytic decolourization of Crystal violet using supported TiO2: effect of some parameters and comparative efficiency, Desal. Water Treat., 53 (2015) 3649–3655.
  12. N. Wang, Y. Zhou, C. Chen, L. Cheng, H. Ding, A g-C3N4 supported graphene oxide/Ag3PO4 composite with remarkably enhanced photocatalytic activity under visible light, Catal. Commun., 73 (2016) 74–79.
  13. J. Fan, Z. Zhao, W. Liu, Y. Xue, S. Yin, Solvothermal synthesis of different phase N-TiO2 and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange, J. Colloid Interface Sci., 470 (2016) 229–236.
  14. H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2–xNx powders, J. Phys. Chem. B, 107 (2003) 5483–5486.
  15. J. Saien, Z. Mesgari, Highly efficient visible-light photocatalyst of nitrogen-doped TiO2 nanoparticles sensitized by hematoporphyrin, J. Mol. Catal. A: Chem., 414 (2016) 108–115.
  16. M. Zafar, J.-Y. Yun, D.-H. Kim, Performance of inverted organic photovoltaic cells with nitrogen doped TiO2 films by atomic layer deposition, Korean J. Chem. Eng., 35 (2018) 567–573.
  17. T. Yonar, G.E. Ustun, S.K. Akal Solmaz, Treatment of 3-indole butyric acid with solar photo-catalytic reactor, Desal. Water Treat., 48 (2012) 82–88.
  18. L. Ma, G. Wang, C. Jiang, H. Bao, Q. Xu, Synthesis of core-shell TiO2@g-C3N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light, Appl. Surf. Sci., 430 (2018) 263–272.
  19. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
  20. M.S. Nasr, M.A.E. Moustafa, H.A.E. Seif, G. El Kobrosy, Application of artificial neural network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance- EGYPT, Alexandria Eng. J., 51 (2012) 37–43.
  21. R. Mahesh, M. Gadekar, M. Ahammed, Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach, J. Environ. Manage., 231 (2019) 241–248.
  22. K. Yetilmezsoy, S. Demirel, Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells, J. Hazard. Mater., 153 (2008) 1288–1300.
  23. M.F. Ahmad, S. Haydar, A.A. Bhatti, A.J. Bari, Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution, Biochem. Eng. J., 84 (2014) 83–90.
  24. A. Hassani, A. Khataee, M. Fathinia, S. Karaca, Photocatalytic ozonation of ciprofloxacin from aqueous solution using TiO2/MMT nanocomposite: nonlinear modeling and optimization of the process via artificial neural network integrated genetic algorithm, Process Saf. Environ. Prot., 116 (2018) 365–376.
  25. M. Bagheri, S.A. Mirbagheri, Z. Bagheri, A.M. Kamarkhani, Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach, Process Saf. Environ. Prot., 95 (2015) 12–25.
  26. Y.R. Ding, Y.J. Cai, P.D. Sun, B. Chen, The use of combined neural networks and genetic algorithms for prediction of river water quality, J. Appl. Res. Technol., 12 (2014) 493–499.
  27. S. Bunsan, W.-Y. Chen, H.-W. Chen, Y.H. Chuang, N. Grisdanurak, Modeling the dioxin emission of a municipal solid waste incinerator using neural networks, Chemosphere, 92 (2013) 258–264.
  28. A. Aleboyeh, M.B. Kasiri, M.E. Olya, H. Aleboyeh, Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks, Dyes Pigm., 77 (2008) 288–294.
  29. D.M. Himmelblau, Applications of artificial neural networks in chemical engineering, Korean J. Chem. Eng., 17 (2000) 373–392.
  30. A. Khani, B. Pezeshki, Easy simultaneous synthesis–immobilization of nanosized CuO–ZnO on perlite as a photocatalyst for degradation of acid orange 7 from aqueous solution in the presence of visible light, Desal. Water Treat., 57 (2016) 7047–7053.
  31. M.S. Seyed Dorraji, A.R. Amani-Ghadim, M.H. Rasoulifard, H. Daneshvar, B. Sistani Zadeh Aghdam, A.R. Tarighati, S.F. Hosseini, Photocatalytic activity of g-C3N4: an empirical kinetic model, optimization by neuro-genetic approach and identification of intermediates, Chem. Eng. Res. Des., 127 (2017) 113–125.
  32. A.R. Khataee, M. Fathinia, M. Zarei, B. Izadkhah, S.W. Joo, Modeling and optimization of photocatalytic/photoassistedelectro- Fenton like degradation of phenol using a neural network coupled with genetic algorithm, J. Ind. Eng. Chem., 20 (2014) 1852–1860.
  33. S. Azadi, A. Karimi-Jashni, S. Javadpour, Modeling and optimization of photocatalytic treatment of landfill leachate using tungsten-doped TiO2 nano-photocatalysts: application of artificial neural network and genetic algorithm, Process Saf. Environ. Prot., 117 (2018) 267–277.
  34. M. Khajeh, A. Sarafraz-Yazdi, Z.B. Natavan, Combination of artificial neural network and genetic algorithm method for modeling of methylene blue adsorption onto wood sawdust from water samples, Toxicol. Ind. Health, 32 (2016) 437–446.
  35. N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlier, J. Lainé, Neural networks for prediction of ultrafiltration transmembrane pressure – application to drinking water production, J. Membr. Sci., 150 (1998) 111–123.
  36. H. Demuth, M. Bwale, Neural Network Toolbox 5 User’s, 2006.
  37. C. Sutherland, A. Marcano, B. Chittoo, Artificial Neural Network-Genetic Algorithm Prediction of Heavy Metal Removal Using a Novel Plant-Based Biosorbent Banana Floret: Kinetic, Equilibrium, Thermodynamics and Desorption Studies, M. Eyvaz, E. Yüksel, Eds., Desalination and Water Treatment, IntechOpen, London, UK, 2018, pp. 385–411.
  38. M.R. Zaki, J. Varshosaz, M. Fathi, Preparation of agar nanospheres: comparison of response surface and artificial neural network modeling by a genetic algorithm approach, Carbohydr. Polym., 122 (2015) 314–320.
  39. P. Devi, U. Das, A.K. Dalai, In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems, Sci. Total Environ., 571 (2016) 643–657.
  40. T.A. Kurniawan, L. Yanyan, T. Ouyang, A.B. Albadarin, G. Walker, BaTiO3/TiO2 composite-assisted photocatalytic degradation for removal of acetaminophen from synthetic wastewater under UV-vis irradiation, Mater. Sci. Semicond. Process., 73 (2018) 42–50.
  41. M.R. Sabour, A. Amiri, Comparative study of ANN and RSM for simultaneous optimization of multiple targets in Fenton treatment of landfill leachate, Waste Manage., 65 (2017) 54–62.
  42. D. Podstawczyk, A. Witek-Krowiak, A. Dawiec, A. Bhatnagar, Biosorption of copper(II) ions by flax meal: empirical modeling and process optimization by response surface methodology (RSM) and artificial neural network (ANN) simulation, Ecol. Eng., 83 (2015) 364–379.
  43. H. Karimi, M. Ghaedi, Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon, J. Ind. Eng. Chem., 20 (2014) 2471–2476.
  44. B. Sharma, K. Venugopalan, Comparison of neural network training functions for hematoma classification in brain CT images, IOSR J. Comput. Eng., 16 (2014) 31–35.