1. S. Ke, J. Tu, J. Zhu, W. Wei, Effect of PAC hydrolysis species on coagulation efficiency and floc characteristics, Chin. J. Environ. Eng., 11 (2017) 733–738.
  2. L. Wang, Y. Chen, S. Du, X. Ma, M. Cheng, Z. Tan, Experimental study on the composite coagulant for the enhanced treatment of domestic sewage, Ind. Water Treat., 2 (2017).
  3. L. Liu, C. Wu, Y. Chen, H. Wang, Preparation, characterization and coagulation behaviour of polyferric magnesium silicate (PFMSi) coagulant, Water Sci. Technol., 75 (2017) 1961–1970.
  4. Y.X. Zhao, B.Y. Gao, B.C. Cao, Z.L. Yang, Q.Y. Yue, H.K. Shon, J.H. Kim, Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment, J. Environ. Eng., 166 (2011) 544–550.
  5. W.U. Yan, Y.L. Yang, L.I. Xing, Z.W. Zhou, W.Q. Wang, S.U. Zhao-Yang, Study on flocs characteristics under three common dominant coagulation mechanisms, China Environ. Sci., 34 (2014) 150–155.
  6. W. Chen, H. Zheng, J. Zhai, Y. Wang, W. Xue, X. Tang, Z. Zhang, Y. Sun, Characterization and coagulation–flocculation performance of a composite coagulant: poly-ferric-aluminum silicate-sulfate, Desal. Water Treat., 56 (2015) 1776–1786.
  7. R. Jiao, H. Xu, W. Xu, X. Yang, D. Wang, Influence of coagulation mechanisms on the residual aluminum – the roles of coagulant species and MW of organic matter, J. Hazard. Mater., 290 (2015) 16–25.
  8. X. Shen, B. Gao, K. Guo, Q. Yue, Characterization and influence of floc under different coagulation systems on ultrafiltration membrane fouling, Chemosphere, 238 (2020), doi: 10.1016/j. chemosphere.2019.124659.
  9. Editorial Board of Water and Wastewater Monitoring and Analysis Method of State Environmental Protection Administration, Methods for the Analysis of Water and Wastewater, 4th ed., Supplement, China Environmental Science Press, China, 2002.
  10. R.F. Packham, Some studies of the coagulation of dispersed clays with hydrolyzing salts, J. Colloid Sci., 20 (1965) 81–92.
  11. P. Loganathan, M. Gradzielski, H. Bustamante, S. Vigneswaran, Progress, challenges, and opportunities in enhancing NOM flocculation using chemically modified chitosan: a review towards future development, Environ. Sci. Water Res. Technol., 6 (2020) 45–61.
  12. S. Gao, Study on the Application of Multiple Flocculants in the Treatment of Low Temperature and Low Turbidity Water from Hongfeng Lake, Wuhan Institute of Technology, China, 2018.
  13. Y. Luo, B. Gao, J. Wang, Q. Yue, Synchronous removal of CuO nanoparticles and Cu2+ by polyaluminum chloride-Enteromorpha polysaccharides: effect of Al species and pH, J. Environ. Sci., 88 (2020) 1–11.
  14. Y.X. Zhao, S. Phuntsho, B.Y. Gao, Y.Z. Yang, J.-H. Kim, H.K. Shon, Comparison of a novel polytitanium chloride coagulant with polyaluminium chloride: coagulation performance and floc characteristics, J. Environ. Manage., 147 (2015) 194–202.
  15. Y. Wang, W. Wang, R. Jia, M. Li, B. Liu, K. Zhang, W. Song, J. Jia, Research on treating algae-polluted reservoir water by the process of pre-oxidation/dissolved air flotation/carbon sand filter, Water Supply, 19 (2018) 823–830.
  16. Y.L. Wang, X. Xu, R. Jia, B. Liu, W. Song, J. Jia, Experimental study on the removal of organic pollutants and NH3–N from surface water via an integrated copolymerization air flotationcarbon sand filtration process, J. Water Supply Res. Technol. AQUA, 67 (2018) 506–516.
  17. W. Huang, H. Chu, B. Dong, M. Hu, Y. Yao, A membrane combined process to cope with algae blooms in water, Desalination, 355 (2015) 99–109.
  18. H.K. Hudnell, The state of US freshwater harmful algal blooms assessments, policy and legislation, Toxicon, 55 (2010) 1024–1034.
  19. D.N. Kothawala, C.A. Stedmon, R.A. Müller, G.A. Weyhenmeyer, S.J. Köhler, L.J. Tranvik, Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey, GCB Bioenergy, 20 (2014) 1101–1114.
  20. R. Yu, R. Liu, D. Zhang, X. Hui, N.W. Coltd, Investigation of the coagulation process in the Ning Dong Water Treatment Plant during abnormal water quality in spring, Water Technol., 11 (2017) 11–16.
  21. S. Yu, X. Huang, Photodegradation of soluble microbial products (SMPs) from membrane bioreactor by GO-COOH/TiO2/Ag, J. Environ. Sci., 88 (2020) 292–300.
  22. W.P. Cheng, Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution, Chemosphere, 47 (2002) 963–969.
  23. S.K. Kam, J. Gregory, The interaction of humic substances with cationic polyelectrolytes, Water Res., 35 (2001) 3557–3566.
  24. N. Wang, J. Ma, Property of Humic Substances in Coagulation and Pre-Oxidation Processes and the Impact on Water Treatment Effectiveness, Harbin Institute of Technology, China, 2012.
  25. L.L. Zhou, Y.J. Zhang, Y.E. He-Xiu, Y.Q. Zhang, Comparison study of enhanced coagulation on humic acid and fulvic acid removal, Environ. Sci., 33 (2012) 2680–2684.
  26. R. Jiao, R. Fabris, C.W.K. Chow, M. Drikas, J. van Leeuwen, D. Wang, Z. Xu, Influence of coagulation mechanisms and floc formation on filterability, J. Environ. Sci., 57 (2017) 338–345.
  27. J. Galloux, L. Chekli, S. Phuntsho, L.D. Tijing, S. Jeong, Y.X. Zhao, B.Y. Gao, S.H. Park, H.K. Shon, Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for coal mining wastewater treatment, Sep. Purif. Technol., 152 (2015) 94–100.
  28. J. Zhao, S. Wang, J. Wang, Y. Zhang, Seawater coagulation process based on floc properties and stability kinetics, Chin. J. Environ. Eng., 9 (2015) 2840–2846.
  29. W. Yu, J. Gregory, L. Campos, The effect of additional coagulant on the re-growth of alum–kaolin flocs, Sep. Purif. Technol., 74 (2010) 305–309.
  30. W. Wei, M. Du, X. Li, Experimental Research on the Performance of Enhanced Flocculation Based on Bottom Sludge Addition, Harbin Institute of Technology, China, 2015.
  31. W. Zhiyuan, W. Chao, W. Peifang, Q. Jin, H. Jun, A. Yanhui, W. Baohai, The performance of chitosan/montmorillonite nanocomposite during the flocculation and floc storage processes of Microcystis aeruginosa cells, Environ. Sci. Pollut. Res., 22 (2015) 11148–11161.