References

  1. F. Parvin, S.Y. Rikta, S.M. Tareq, Chapter 8 – Application of Nanomaterials for the Removal of Heavy Metal from Wastewater, A. Ahsan, A.F. Ismail, Eds., Nanotechnology in Water and Wastewater Treatment, Elsevier, 2019, pp. 137–157.
  2. R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation, ISRN Ecol., 2011 (2011) 20, https:// doi.org/10.5402/2011/402647.
  3. R. Bisht, M. Agarwal, K. Singh, Methodologies for removal of heavy metal ions from wastewater: an overview, Interdiscip. Environ. Rev., 18 (2017) 124–142.
  4. P. Biniaz, N. Torabi Ardekani, M.A. Makarem, M.R. Rahimpour, Water and wastewater treatment systems by novel integrated membrane distillation (MD), ChemEng., 3 (2019) 8.
  5. A.L. Ahmad, A. Kusumastuti, C.J.C. Derek, B.S. Ooi, Emulsion liquid membrane for heavy metal removal: an overview on emulsion stabilization and destabilization, Chem. Eng. J., 171 (2011) 870–882.
  6. M. Chakraborty, C. Bhattacharya, S. Datta, Chapter 4 – Emulsion Liquid Membranes: Definitions and Classification, Theories, Module Design, Applications, V.S. Kislik, Ed., New Directions and Perspectives, Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment, Elsevier, Amsterdam, Netherlands, 2010, pp. 141–199.
  7. T. Martin, G. Davies, The extraction of copper from dilute aqueous solutions using a liquid membrane process, Hydrometallurgy, 2 (1977) 315–334.
  8. K. Kondo, K. Kita, I. Koida, J. Irief, Nakashio, Extraction of copper with liquid surfactant membranes containing benzoylacetone, J. Chem. Eng. Jpn., 12 (1979) 203–209.
  9. D. Lorbach, R. Marr, Emulsion liquid membranes Part II: modelling mass transfer of zinc with bis (2-ethylhexyl) dithiophosphoric acid, Chem. Eng. Process. Process Intensif., 21 (1987) 83–93.
  10. H. Asadian, A. Ahmadi, The extraction of gallium from chloride solutions by emulsion liquid membrane: optimization through response surface methodology, Miner. Eng., 148 (2020) 106207.
  11. N.F.M. Noah, R.N.R. Sulaiman, N. Othman, N. Jusoh, M.B. Rosly, Extractive continuous extractor for chromium recovery: chromium(VI) reduction to chromium(III) in sustainable emulsion liquid membrane process, J. Cleaner Prod., 247 (2020) 119167.
  12. A. Benderrag, B. Haddou, M. Daaou, H. Benkhedja, B. Bounaceur, M. Kameche, Experimental and modeling studies on Cd(II) ions extraction by emulsion liquid membrane using Triton X-100 as biodegradable surfactant, J. Environ. Chem. Eng., 7 (2019) 103166.
  13. A.A. Mohammed, M.A. Atiya, M.A. Hussein, Studies on membrane stability and extraction of ciprofloxacin from aqueous solution using pickering emulsion liquid membrane stabilized by magnetic nano-Fe2O3, Colloids Surf., A, 585 (2020) 124044.
  14. A.A. Mohammed, M.A. Atiya, M.A. Hussein, Simultaneous studies of emulsion stability and extraction capacity for the removal of tetracycline from aqueous solution by liquid surfactant membrane, Chem. Eng. Res. Des., 159 (2020) 225–235.
  15. M.B. Rosly, N. Jusoh, N. Othman, H.A. Rahman, N.F.M. Noah, R.N.R. Sulaiman, Effect and optimization parameters of phenol removal in emulsion liquid membrane process via fractional-factorial design, Chem. Eng. Res. Des., 145 (2019) 268–278.
  16. T. Kakoi, M. Goto, F. Nakashio, Separation of platinum and palladium by liquid surfactant membranes utilizing a novel bi-functional surfactant, J. Membr. Sci., 120 (1996) 77–88.
  17. M.S. Uddin, M. Kathiresan, Extraction of metal ions by emulsion liquid membrane using bi-functional surfactant: equilibrium and kinetic studies, Sep. Purif. Technol., 19 (2000) 3–9.
  18. R. Wodzki, A. Wyszynska, A. Narebska, Two-component emulsion liquid membranes with macromolecular carriers of divalent ions, Sep. Sci. Technol., 25 (1990) 1175–1187.
  19. K.M. Carley, N.Y. Kamneva, J. Reminga, Response Surface Methodology, Carnegie-Mellon University, PA School of Computer Science, Pittsburgh, Pennsylvania, 2004.
  20. M. Niroomanesh, M.R. Ehsani, M. Ghadiri, A.A. Shamsabadi, S. Laki, Solvent extraction of Mn(II) by mixture of MEHPA and DEHPA (MDEHPA) from sulfate solution, Trans. Indian Inst. Met., 69 (2016) 1–7.
  21. S. Laki, A.A. Shamsabadi, S.S. Madaeni, M. Niroomanesh, Separation of manganese from aqueous solution using an emulsion liquid membrane, RSC Adv., 5 (2015) 84195–84206.
  22. M. Mesli, N.-E. Belkhouche, Emulsion ionic liquid membrane for recovery process of lead. Comparative study of experimental and response surface design, Chem. Eng. Res. Des., 129 (2018) 160–169.
  23. S.P. Ventura, F.A. de Silva, M.V. Quental, D. Mondal, M.G. Freire, J.A. Coutinho, Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends, Chem. Rev., 117 (2017) 6984–7052.
  24. T.A. Todd, J.D. Law, R.S. Herbst, G.J. Lumetta, B.A. Moyer, Treatment of Radioactive Wastes using Liquid–Liquid Extraction Technologies-Fears, Facts, and Issues, Waste Management Conference, Tucson, AZ, February 27 – March 2, 2000.
  25. D. Tudela, The reaction of copper(II) with thiocyanate ions, J. Chem. Educ., 70 (1993) 174.
  26. H.Z. Gök, Y. Gök, E. Eker, Synthesis, characterization, and metal extraction studies of a new macrobicyclic ligand, Turk. J. Chem., 39 (2015) 426–437.
  27. F. Habashi, A Textbook of Hydrometallurgy, 2nd ed., Métallurgie Extractive Québec, Enr., 1993, p. 13.
  28. Y. Xu, J. Lu, D.Q. Li, The effect of KSCN on the partition of proteins in polyethylene glycol/(NH4)2SO4 aqueous two-phase system, Prep. Biochem. Biotechnol., 31 (2001) 23–31.
  29. G. Rodrigues, M. Hespanhol, L. Mendes da Silva, F. Paggioli, L. Minim, J. Coimbra, Liquid–liquid extraction of metal ions without use of organic solvent, Sep. Purif. Technol., 62 (2008) 687–693.
  30. K. Sarangi, P.K. Parhi, E. Padhan, A. Palai, K. Nathsarma, K.-H. Park, Separation of iron(III), copper(II) and zinc(II) from a mixed sulfate/chloride solution using TBP, LIX 84I and Cyanex 923, Sep. Purif. Technol., 55 (2007) 44–49.
  31. F. Goodarzi, S. Zendehboudi, A comprehensive review on emulsions and emulsion stability in chemical and energy industries, Can. J. Chem. Eng., 97 (2019) 281–309.
  32. F. Valenzuela, C. Araneda, F. Vargas, C. Basualto, J. Sapag, Liquid membrane emulsion process for recovering the copper content of a mine drainage, Chem. Eng. Res. Des., 87 (2009) 102–108.
  33. H. Ma, O. Kökkılıç, K.E. Waters, The use of the emulsion liquid membrane technique to remove copper ions from aqueous systems using statistical experimental design, Miner. Eng., 107 (2017) 88–99.
  34. F. Valenzuela, C. Fonseca, C. Basualto, O. Correa, C. Tapia, J. Sapag, Removal of copper ions from a waste mine water by a liquid emulsion membrane method, Miner. Eng., 18 (2005) 33–40.
  35. Y.T. Mohamed, A.M. Ibrahim, Extraction of copper from waste solution using liquid emulsion membrane, J. Environ. Prot., 3 (2012) 129.
  36. J. Szymanowski, Hydroxyoximes and Copper Hydrometallurgy, CRC Press, Taylor & Francis, London, 1993.
  37. A.L. Ahmad, Z. Shafie, N.D. Zaulkiflee, W.Y. Pang, Preliminary study of emulsion liquid membrane formulation on acetaminophen removal from the aqueous phase, Membranes (Basel), 9 (2019) 133.
  38. H. Liu, Y.-m. Zhang, J. Huang, T. Liu, N.-n. Xue, Q.-h. Shi, Optimization of vanadium(IV) extraction from stone coal leaching solution by emulsion liquid membrane using response surface methodology, Chem. Eng. Res. Des., 123 (2017) 111–119.
  39. M. Akhond, M. Shamsipur, Highly selective and efficient membrane transport of copper as Cu(SCN) 2−4 ion using K+-dicyclohexyl-18-crown-6 as carrier, Sep. Sci. Technol., 30 (1995) 3061–3072.
  40. A.V. Mukkolath, P.T. Gadekar, K.K. Tiwari, A new method for the reduction of swelling in liquid emulsion membrane systems, Chem. Ind., 6 (1990) 192–193.
  41. W. Ho, K. Sirkar, Membrane Handbook, Wiley Online Library, New York, 1995, p. 954.
  42. M.V. Peralta-Martínez, A. Arriola-Medellín, E. Manzanares- Papayanopoulos, R. Sánchez-Sánchez, E.M. Palacios-Lozano, Influence of the speed mixing-on viscosity and droplet size of oil in water emulsions, Pet. Sci. Technol., 22 (2004) 1035–1043.
  43. P. Davoodi-Nasab, A. Rahbar-Kelishami, J. Safdari, H. Abolghasemi, Evaluation of the emulsion liquid membrane performance on the removal of gadolinium from acidic solutions, J. Mol. Liq., 262 (2018) 97–103.
  44. D. Clausse, I. Pezron, L. Komunjer, Stability of W/O and W/O/W emulsions as a result of partial solidification, Colloids Surf., A, 152 (1999) 23–29.
  45. A.J. Shere, H.M. Cheung, Modeling of leakage in liquid surfactant membrane systems, Chem. Eng. Commun., 68 (1988) 143–164.
  46. M. Raji, H. Abolghasemi, J. Safdari, A. Kargari, Selective extraction of dysprosium from acidic solutions containing dysprosium and neodymium through emulsion liquid membrane by Cyanex 572 as carrier, J. Mol. Liq., 254 (2018) 108–119.
  47. P.S. Kankekar, S.J. Wagh, V.V. Mahajani, Process intensification in extraction by liquid emulsion membrane (LEM) process: a case study; enrichment of ruthenium from lean aqueous solution, Chem. Eng. Process. Process Intensif., 49 (2010) 441–448.
  48. P. Kulkarni, S. Mukhopadhyay, M. Bellary, S. Ghosh, Studies on membrane stability and recovery of uranium(VI) from aqueous solutions using a liquid emulsion membrane process, Hydrometallurgy, 64 (2002) 49–58.
  49. A. Kargari, T. Kaghazchi, M. Sohrabi, M. Soleimani, Batch extraction of gold(III) ions from aqueous solutions using emulsion liquid membrane via facilitated carrier transport, J. Membr. Sci., 233 (2004) 1–10.
  50. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley Series in Probability and Statistics), 4th ed., Wiley, New York, 2009.
  51. G.E. Box, N.R. Draper, Empirical Model-Building and Response Surfaces, Wiley Series in Probability and Statistics, University of Minnesota, 1987.
  52. T.K. Kim, Understanding one-way ANOVA using conceptual figures, Korean J. Anesthesiol., 70 (2017) 22–26.
  53. I. Salahshoori, A. Hatami, A. Seyfaee, Investigation of experimental results and D-optimal design of hafnium ion extraction from aqueous system using emulsion liquid membrane technique, J. Iran. Chem. Soc., (2020), doi: 10.1007/ s13738-020-02007-9.
  54. M. Bicego, S. Baldo, Properties of the Box-Cox transformation for pattern classification, Neurocomputing, 218 (2016) 390–400.
  55. D.F. Wee, Disaster: Mental Health Services, Taylor & Francis, New York, 2005.
  56. H.-Y. Kim, Analysis of variance (ANOVA) comparing means of more than two groups, Restor. Dent. Endodontics, 39 (2014) 74–77.
  57. T. Dahiru, p-value, a true test of statistical significance? A cautionary note, Ann. Ibadan Postgraduate Med., 6 (2008) 21–26.
  58. M. Chakraborty, C. Bhattacharjee, S. Datta, Mass transfer analysis of the extraction of nickel(II) by emulsion liquid membrane, Indian J. Chem. Technol., 10 (2003) 311–320.