References

  1. H.S. Saeedeh Hashemian, Saeedeh ragabion adsorption of cobalt(II) from aqueous solutions by Fe3O4/bentonite nanocomposite, Water Air Soil Pollut., 226 (2015) 2212.
  2. M. Yousefi, M.H. Dehghani, S.M. Nasab, V. Taghavimanesh, S. Nazmara, A.A. Mohammadi, Data on trend changes of drinking groundwater resources quality: a case study in Abhar, Data Brief, 17 (2018) 424–430.
  3. V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: a review, Sci. Total Environ., 408 (2009) 1–13.
  4. M. Abbas, S. Kaddour, M. Trari, Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon, J. Ind. Eng. Chem., 20 (2014) 745–751.
  5. F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun, Z. Jin, J. Wang, X.-J. Huang, J. Liu, Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite, J. Hazard. Mater., 270 (2014) 1–10.
  6. X. Yang, F. Jie, B. Wang, Z. Bai, High-efficient synergistic extraction of Co(II) and Mn(II) from wastewater via novel microemulsion and annular centrifugal extractor, Sep. Purif. Technol., 209 (2019) 997–1006.
  7. J. Mizera, G. Mizerová, V. Machovič, L. Borecká, Sorption of cesium, cobalt and europium on low-rank coal and chitosan, Water Res., 41 (2007) 620–626.
  8. V.K. Gupta, C.K. Jain, I. Ali, M. Sharma, V.K. Saini, Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste, Water Res., 37 (2003) 4038–4044.
  9. A. Ahmadpour, M. Tahmasbi, T.R. Bastami, J.A. Besharati, Rapid removal of cobalt ion from aqueous solutions by almond green hull, J. Hazard. Mater., 166 (2009) 925–930.
  10. J. Oliva, J. De Pablo, J.-L. Cortina, J. Cama, C. Ayora, Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: column experiments, J. Hazard. Mater., 194 (2011) 312–323.
  11. I.A. Aguayo-Villarreal, D. Cortes-Arriagada, C.K. Rojas- Mayorga, K. Pineda-Urbina, R. Muñiz-Valencia, J. González, Importance of the interaction adsorbent – adsorbate in the dyes adsorption process and DFT modeling, J. Mol. Struct., 1203 (2020) 127398–127406.
  12. Mandeep, A. Gulati, R. Kakkar, Graphene-based adsorbents for water remediation by removal of organic pollutants: theoretical and experimental insights, Chem. Eng. Res. Design, 153 (2020) 21–36.
  13. Y.A. Patil, B. Sadhu, D.R. Boraste, A.L. Borkar, G.S. Shankarling, Utilization of Cucurbit[6]uril as an effective adsorbent for the remediation of Phthalocyanine and Procion golden yellow dyes, J. Mol. Struct., 1202 (2020) 127278–127286.
  14. R. Kueasook, N. Rattanachueskul, N. Chanlek, D. Dechtrirat, W. Watcharin, P. Amornpitoksuk, L. Chuenchom, Green and facile synthesis of hierarchically porous carbon monoliths via surface self-assembly on sugarcane bagasse scaffold: Influence of mesoporosity on efficiency of dye adsorption, Microporous Mesoporous Mater., 296 (2020) 110005–10014.
  15. A.I. Borhan, D. Gherca, Ş. Cojocaru, N. Lupu, T. Roman, M. Zaharia, M.N. Palamaru, A.R. Iordan, One-pot synthesis of hierarchical magnetic porous γ-Fe2O3@NiFe2O4 composite with solid-phase morphology changes promoted by adsorption of anionic azo-dye, Mater. Res. Bull., 122 (2020) 110664–110675.
  16. B. Fonseca, H. Figueiredo, J. Rodrigues, A. Queiroz, T. Tavares, Mobility of Cr, Pb, Cd, Cu and Zn in a loamy sand soil: a comparative study, Geoderma, 164 (2011) 232–237.
  17. X. Tan, M. Fang, C. Chen, S. Yu, X. Wang, Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution, Carbon, 46 (2008) 1741–1750.
  18. X. Tan, Q. Fan, X. Wang, B. Grambow, Eu(III) sorption to TiO2 (Anatase and Rutile): batch, XPS, and EXAFS Studies, Environ. Sci. Technol., 43 (2009) 3115–3121.
  19. V.K. Gupta, S. Agarwal, T.A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes, Water Res., 45 (2011) 2207–2212.
  20. M. Havelcová, J. Mizera, I. Sýkorová, M. Pekař, Sorption of metal ions on lignite and the derived humic substances, J. Hazard. Mater., 161 (2009) 559–564.
  21. X. Wu, X. Tan, S. Yang, T. Wen, H. Guo, X. Wang, A. Xu, Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides, Water Res., 47 (2013) 4159–4168.
  22. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  23. G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets As superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol., 45 (2011) 10454–10462.
  24. S. Zafar, M.I. Khan, M. Khraisheh, S. Shahida, T. Javed, M.L. Mirza, N. Khalid, Use of rice husk as an effective sorbent for the removal of cerium ions from aqueous solution: kinetic, equilibrium and thermodynamic studies, Desal. Water Treat., 150 (2019) 124–135.
  25. S. Zafar, M.I. Khan, M. Khraisheh, S. Shahida, N. Khalid, M.L. Mirza, Effective removal of lanthanum ions from aqueous solution using rice husk: impact of experimental variables, Desal. Water Treat., 132 (2019) 263–273.
  26. S. Zafar, M.I. Khan. M. Khraisheh, M.H. Lashari, S. Shahida, M.F. Azhar, P. Prapamonthon, M.L. Mirza, N. Khalid, Kinetic, equilibrium and thermodynamic studies for adsorption of nickel ions onto husk of Oryza sativa, Desal. Water Treat., 167 (2019) 277–290.
  27. A. Demirbas, Heavy metal adsorption onto agro-based waste materials: a review, J. Hazard. Mater., 157 (2008) 220–229.
  28. D.W. O’Connell, C. Birkinshaw, T.F. O’Dwyer, Heavy metal adsorbents prepared from the modification of cellulose: a review, Bioresour. Technol., 99 (2008) 6709–6724.
  29. M.I. Khan, M.H. Lashari, M. Khraisheh, S. Shahida, S. Zafar, P. Prapamonthon, A. Rehman, S. Anjum, N. Akhtar, F. Hanif, Adsorption kinetic, equilibrium and thermodynamic studies of Eosin-B onto anion exchange membrane, Desal. Water Treat., 155 (2019) 84–93.
  30. M.I. Khan, T.M. Ansari, S. Zafar, A.R. Buzdar, M.A. Khan, F. Mumtaz, P. Prapamonthon, M. Akhtar, Acid green-25 removal from wastewater by anion exchange membrane: adsorption kinetic and thermodynamic studies, Membr. Water Treat., 9 (2018) 79–85.
  31. M.I. Khan, S. Zafar, A.R. Buzdar, M.F. Azhar, W. Hassan, A. Aziz, Use of citrus Sinensis leaves as a bioadsorbent for removal of congo red dye from aqueous solution, Fresenius Environ. Bull., 27 (2018) 4679–4688.
  32. M.I. Khan, S. Zafar, M.A. Khan, S. Zafar, F. Mumtaz, P. Prapamonthon, A.R. Buzdar, Bougainvillea glabra leaves for adsorption of congo red from wastewater, Fresenius Environ. Bull., 27 (2018) 1456–1465.
  33. M.I. Khan, M.A. Khan, S. Zafar, M.N. Ashiq, M. Athar, A.M. Qureshi, M. Arshad, Kinetic, equilibrium and thermodynamic studies for the adsorption of methyl orange using new anion exchange membrane (BII), Desal. Water Treat., 58 (2017) 285–297.
  34. M.I. Khan, S. Zafar, M.A. Khan, A.R. Buzdar, P. Prapamonthon, Adsorption kinetic, equilibrium and thermodynamic study for the removal of Congo Red from aqueous solution, Desal. Water Treat., 98 (2017) 294–305.
  35. M.I. Khan, S. Akhtar, S. Zafar, A. Shaheen, M.A. Khan, R. Luque, A. Rehman, Removal of Congo red from aqueous solution by anion exchange membrane (EBTAC): adsorption kinetics and themodynamics, Materials, 8 (2015) 4147–4161.
  36. M.I. Khan, S. Zafar, H.B. Ahmad, M. Hussain, Z. Shafiq, Use of morus albal leaves as bioadsorbent for the removal of congo red dye, Fresenius Environ. Bull., 24 (2015) 2251–2258.
  37. M.A. Khan, M.I. Khan, S. Zafar, Removal of different anionic dyes from aqueous solution by anion exchange membrane, Membr. Water Treat., 8(2017) 259–277.
  38. M.I. Khan, L. Wu, A.N. Mondal, Z. Yao, L. Ge, T. Xu, Adsorption of methyl orange from aqueous solution on anion exchange membranes: adsorption kinetics and equilibrium, Membr. Water Treat., 7 (2016) 23–38.
  39. S. Zafar, N. Khalid, M.L. Mirza, Potential of rice husk for the decontamination of silver ions from aqueous media, Sep. Sci. Technol., 47 (2012) 1793–1801.
  40. V.C. Srivastaa, I.D. Mall, I.M. Mishra, Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA, J. Hazard. Mater., 134 (2006) 257–267.
  41. S.K. Kazy, P. Sar, S.P. Singh, A.K. Sen, S.F. D’Souza, Extracellular polysaccha-rides of a copper sensitive and a copper resistant Pseudomonas aeruginosa stain: synthesis, chemical nature and copper binding, World J. Microbiol. Biotechnol., 18 (2002) 583–588.
  42. S.K. Kazy, S. D’Souza, P. Sar, Uranium and thorium sequestration by a Pseudomonas sp.: mechanism and chemical characterization, J. Hazard. Mater., 163 (2009) 65–72.
  43. X. Ying-Mei, Q. Ji, H. De-Min, W. Dong-Mei, C. Hui-Ying, G. Jun, Z. Qiu-Min, Preparation of amorphous silica from oil shale residue and surface modification by silane coupling agent, Oil Shale, 27 (2010) 37–46.
  44. L. Ludueña, D. Fasce, V.A. Alvarez, P.M. Stefani, Nanocellulose from rice husk following alkaline treatment to remove silica, BioResources, 6 (2011) 1440–1453.
  45. M.B. Ibrahim, W.L. Jimoh, Bioremediation of Ni(II) and Cd(II) from aqueous solution, Indian J. Sci. Technol., 4 (2011) 487–491.
  46. H. Omar, S. Abu-Kharda, L. Abd El-Baset, R. Abu-Shohba, Efficiency of Dry (Psidium guava) leaves for the removal of cesium-137 from aqueous solutions, Arabian J. Nucl. Sci. Appl., 45 (2012) 505–515.
  47. J.T. Nwabanne, P.K. Igbokwe, Copper(II) uptake by adsorption using palmyra palm nut, Adv. Appl. Sci. Res., 2 (2011) 166–175.
  48. M. Torab-Mostaedi, Biosorption of lanthanum and cerium from aqueous solutions using tangerine (Citrus reticulata) peel: equilibrium, kinetic, and thermodynamic studies, Chem. Ind. Chem. Eng., 19 (2013) 79–88.
  49. S. Larous, A.-H. Meniai, M.B. Lehocine, Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust, Desalination, 185 (2005) 483–490.
  50. A. Özer, D. Özer, A. Özer, The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters, Process Biochem., 39 (2004) 2183–2191.
  51. J. Egila, B. Dauda, T. Jimoh, Biosorptive removal of cobalt(II) ions from aqueous solution by Amaranthus hydridus L. stalk wastes, Afr. J. Biotechnol., 9 (2010) 8192–8198.
  52. M. Malakootian, A. Almasi, H. Hossaini, Pb and Co removal from paint industries effluent using wood ash, Int. J. Environ. Sci. Technol., 5 (2008) 217–222.
  53. S. Largergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungl. Svens. Vetenskapsakad., Handl., 24 (1898) 1–39.
  54. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  55. Y.-S. Ho, Effect of pH on lead removal from water using tree fern as the sorbent, Bioresour. Technol., 96 (2005) 1292–1296.
  56. E. Demirbas, M. Kobya, E. Senturk, T. Ozkan, Adsorption kinetics for the removal of chromium(VI) from aqueous solutions on the activated carbons prepared from agricultural wastes, Water SA, 30 (2004) 533–539.
  57. Y.S. Ho, G. McKay, Application of kinetic models to the sorption of copper(II) on to peat, Adsorpt. Sci. Technol., 20 (2002) 797–815.
  58. B. Subramanyam, A. Das, Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil, Int. J. Environ. Sci. Technol., 6 (2009) 633–640.
  59. A. Itodo, H. Itodo, Sorption energies estimation using Dubinin–Radushkevich and Temkin adsorption isotherms, Life Sci. J., 7 (2010) 31–39.