References
- J.S. Liu, L.L. Wu, X.H. Chen, Kinetic model investigation on
lead(II) adsorption using silica-based hybrid membranes,
Desal. Water Treat., 54 (2015) 2307–2313.
- T.M. Zewail, N.S. Yousef, Kinetic study of heavy metal ions
removal by ion exchange in batch conical air spouted bed,
Alexandria Eng. J., 54 (2015) 83–90.
- Y. Si, J. Huo, H.B. Yin, A. Wang, Adsorption kinetics, isotherms,
and thermodynamics of Cr(III), Pb(II), and Cu(II) on porous
hydroxyapatite nanoparticles, J. Nanosci. Nanotechnol.,
18 (2018) 3484–3491.
- P. Miretzky, A. Saralegui, A.F. Cirelli, Simultaneous heavy metal
removal mechanism by dead macrophytes, Chemosphere,
62 (2006) 247–254.
- I. Mobasherpour, E. Salahi, M. Pazouki, Removal of nickel(II)
from aqueous solutions by using nano-crystalline calcium
hydroxyapatite, J. Saudi Chem. Soc., 15 (2011) 105–112.
- M. Ferri, S. Campisi, M. Scavini, C. Evangelisti, P. Carniti,
A. Gervasini, In-depth study of the mechanism of heavy
metal trapping on the surface of hydroxyapatite, Appl. Surf.
Sci., 475 (2019) 397–409.
- Q.Y. Ma, S.J. Traina, T.J. Logan, J.A. Ryan, Effects of aqueous
Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by
hydroxyapatite, Environ. Sci. Technol., 28 (1994) 1219–1228.
- K. Chojnacka, Equilibrium and kinetic modelling of
chromium(III) sorption by animal bones, Chemosphere,
59 (2005) 315–320.
- J.V. Flores-Cano, R. Leyva-Ramos, F. Carrasco-Marin, A. Aragón-Piña, J.J. Salazar-Rabago, S. Leyva-Ramos, Adsorption mechanism
of chromium(III) from water solution on bone char: effect
of operating conditions, Adsorption, 22 (2016) 297–308.
- A.C. Gonçalves Jr., H. Nacke, D. Schwantes, M.A. Campagnolo,
A.J. Miola, C.R. Teixeira Tarley, D.C. Dragunski, F.A. Cajamarca
Suquila, Adsorption mechanism of chromium(III) using
biosorbents of Jatropha curcas L, Environ. Sci. Pollut. Res.,
24 (2017) 21778–21790.
- M.S.M. Arsad, P.M. Lee, L.K. Hung, Synthesis and
Characterization of Hydroxyapatite Nanoparticles and β-TCP
Particles, 2nd International Conference on Biotechnology
and Food Science IPCBEE, IACSIT Press, Singapore, 2011,
pp. 184–188.
- S. Campisi, C. Castellano, A. Gervasini, Tailoring the structural
and morphological properties of hydroxyapatite materials to
enhance the capture efficiency towards copper(II) and lead(II)
ions, New J. Chem., 42 (2018) 4520–4530.
- E. Deydier, R. Guilet, P. Sharrock, Beneficial use of meat and
bone meal combustion residue: “an efficient low cost material
to remove lead from aqueous effluent”, J. Hazard. Mater. B,
101 (2003) 55–64.
- L.-C. Hsu, Y.-T. Liu, C.-H. Syu, M.-H. Huang, Y.-M. Tzou,
H.Y. Teah, Adsorption of tetracycline on Fe (hydr)oxides:
effects of pH and metal cation (Cu2+, Zn2+ and Al3+) addition
in various molar ratios, R. Soc. Open Sci., 5 (2018) 171941.
- R. Leyva-Ramos, L. Fuentes-Rubio, R.M. Guerrero-Coronado,
J. Mendoza-Barron, Adsorption of trivalent chromium from
aqueous solutions onto activated carbon, J. Chem. Technol.
Biotechnol., 62 (1995) 64–67.
- M. Wakamura, K. Kandori, T. Ishikawa, Surface composition
of calcium hydroxyapatite modified with metal ions, Colloids
Surf., A, 142 (1998) 107–116.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- N.Y. Mezenner, A. Bensmaili, Kinetics and thermodynamic
study of phosphate adsorption on iron hydroxide-eggshell
waste, Chem. Eng. J., 147 (2009) 87–96.
- M.A. Ahmad, N.A.A. Puad, O.S. Bello, Kinetic, equilibrium
and thermodynamic studies of synthetic dye removal using
pomegranate peel activated carbon prepared by microwaveinduced
KOH activation, Water Resour. Ind., 6 (2014) 18–35.
- V.O. Shikuku, R. Zanella, C.O. Kowenje, F.F. Donato,
N.M.G. Bandeira, O.D. Prestes, Single and binary adsorption
of sulfonamide antibiotics onto iron-modified clay: linear
and nonlinear isotherms, kinetics, thermodynamics, and
mechanistic studies, Appl. Water Sci., 8 (2018) 175.
- Z. Aksu, S. Tezer, Biosorption of reactive dyes on the green
alga Chlorella vulgaris, Process Biochem., 40 (2005) 1347–1361.
- F. Ouadjenia-Marouf, R. Marouf, J. Schott, A. Yahiaoui, Removal
of Cu(II), Cd(II) and Cr(III) ions from aqueous solution by
dam silt, Arabian J. Chem., 6 (2013) 401–406.
- N.S. Yousef, R. Farouq, R. Hazzaa, Adsorption kinetics
and isotherms for the removal of nickel ions from aqueous
solutions by an ion-exchange resin: application of two and
three parameter isotherm models, Desal. Water Treat., 57 (2016)
21925–21938.
- K.G. Akpomie, F.A. Dawodu, K.O. Adebowale, Mechanism on
the sorption of heavy metals from binary-solution by a low cost
montmorillonite and its desorption potential, Alexandria Eng.
J., 54 (2015) 757–767.
- Y.S. Ho, D.A.J. Wase, C.F. Forster, Removal of lead ions from
aqueous solution using Sphagnum moss peat as adsorbent,
Water SA, 22 (1996) 219–224.
- F.J. Alguacil, M. Alonso, L.J. Lozano, Chromium(III) recovery
from waste acid solution by ion exchange processing using
Amberlite IR-120 resin: batch and continuous ion exchange
modelling, Chemosphere, 57 (2004) 789–793.
- A. Alemu, B. Lemma, N. Gabbiye, K.Y. Foo, Adsorption of
chromium(III) from aqueous solution using vesicular basalt
rock, Cogent Environ. Sci., 5 (2019) 1650416.