References

  1. J.S. Liu, L.L. Wu, X.H. Chen, Kinetic model investigation on lead(II) adsorption using silica-based hybrid membranes, Desal. Water Treat., 54 (2015) 2307–2313.
  2. T.M. Zewail, N.S. Yousef, Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed, Alexandria Eng. J., 54 (2015) 83–90.
  3. Y. Si, J. Huo, H.B. Yin, A. Wang, Adsorption kinetics, isotherms, and thermodynamics of Cr(III), Pb(II), and Cu(II) on porous hydroxyapatite nanoparticles, J. Nanosci. Nanotechnol., 18 (2018) 3484–3491.
  4. P. Miretzky, A. Saralegui, A.F. Cirelli, Simultaneous heavy metal removal mechanism by dead macrophytes, Chemosphere, 62 (2006) 247–254.
  5. I. Mobasherpour, E. Salahi, M. Pazouki, Removal of nickel(II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite, J. Saudi Chem. Soc., 15 (2011) 105–112.
  6. M. Ferri, S. Campisi, M. Scavini, C. Evangelisti, P. Carniti, A. Gervasini, In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite, Appl. Surf. Sci., 475 (2019) 397–409.
  7. Q.Y. Ma, S.J. Traina, T.J. Logan, J.A. Ryan, Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite, Environ. Sci. Technol., 28 (1994) 1219–1228.
  8. K. Chojnacka, Equilibrium and kinetic modelling of chromium(III) sorption by animal bones, Chemosphere, 59 (2005) 315–320.
  9. J.V. Flores-Cano, R. Leyva-Ramos, F. Carrasco-Marin, A. Aragón-Piña, J.J. Salazar-Rabago, S. Leyva-Ramos, Adsorption mechanism of chromium(III) from water solution on bone char: effect of operating conditions, Adsorption, 22 (2016) 297–308.
  10. A.C. Gonçalves Jr., H. Nacke, D. Schwantes, M.A. Campagnolo, A.J. Miola, C.R. Teixeira Tarley, D.C. Dragunski, F.A. Cajamarca Suquila, Adsorption mechanism of chromium(III) using biosorbents of Jatropha curcas L, Environ. Sci. Pollut. Res., 24 (2017) 21778–21790.
  11. M.S.M. Arsad, P.M. Lee, L.K. Hung, Synthesis and Characterization of Hydroxyapatite Nanoparticles and β-TCP Particles, 2nd International Conference on Biotechnology and Food Science IPCBEE, IACSIT Press, Singapore, 2011, pp. 184–188.
  12. S. Campisi, C. Castellano, A. Gervasini, Tailoring the structural and morphological properties of hydroxyapatite materials to enhance the capture efficiency towards copper(II) and lead(II) ions, New J. Chem., 42 (2018) 4520–4530.
  13. E. Deydier, R. Guilet, P. Sharrock, Beneficial use of meat and bone meal combustion residue: “an efficient low cost material to remove lead from aqueous effluent”, J. Hazard. Mater. B, 101 (2003) 55–64.
  14. L.-C. Hsu, Y.-T. Liu, C.-H. Syu, M.-H. Huang, Y.-M. Tzou, H.Y. Teah, Adsorption of tetracycline on Fe (hydr)oxides: effects of pH and metal cation (Cu2+, Zn2+ and Al3+) addition in various molar ratios, R. Soc. Open Sci., 5 (2018) 171941.
  15. R. Leyva-Ramos, L. Fuentes-Rubio, R.M. Guerrero-Coronado, J. Mendoza-Barron, Adsorption of trivalent chromium from aqueous solutions onto activated carbon, J. Chem. Technol. Biotechnol., 62 (1995) 64–67.
  16. M. Wakamura, K. Kandori, T. Ishikawa, Surface composition of calcium hydroxyapatite modified with metal ions, Colloids Surf., A, 142 (1998) 107–116.
  17. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  18. N.Y. Mezenner, A. Bensmaili, Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste, Chem. Eng. J., 147 (2009) 87–96.
  19. M.A. Ahmad, N.A.A. Puad, O.S. Bello, Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwaveinduced KOH activation, Water Resour. Ind., 6 (2014) 18–35.
  20. V.O. Shikuku, R. Zanella, C.O. Kowenje, F.F. Donato, N.M.G. Bandeira, O.D. Prestes, Single and binary adsorption of sulfonamide antibiotics onto iron-modified clay: linear and nonlinear isotherms, kinetics, thermodynamics, and mechanistic studies, Appl. Water Sci., 8 (2018) 175.
  21. Z. Aksu, S. Tezer, Biosorption of reactive dyes on the green alga Chlorella vulgaris, Process Biochem., 40 (2005) 1347–1361.
  22. F. Ouadjenia-Marouf, R. Marouf, J. Schott, A. Yahiaoui, Removal of Cu(II), Cd(II) and Cr(III) ions from aqueous solution by dam silt, Arabian J. Chem., 6 (2013) 401–406.
  23. N.S. Yousef, R. Farouq, R. Hazzaa, Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ion-exchange resin: application of two and three parameter isotherm models, Desal. Water Treat., 57 (2016) 21925–21938.
  24. K.G. Akpomie, F.A. Dawodu, K.O. Adebowale, Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential, Alexandria Eng. J., 54 (2015) 757–767.
  25. Y.S. Ho, D.A.J. Wase, C.F. Forster, Removal of lead ions from aqueous solution using Sphagnum moss peat as adsorbent, Water SA, 22 (1996) 219–224.
  26. F.J. Alguacil, M. Alonso, L.J. Lozano, Chromium(III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: batch and continuous ion exchange modelling, Chemosphere, 57 (2004) 789–793.
  27. A. Alemu, B. Lemma, N. Gabbiye, K.Y. Foo, Adsorption of chromium(III) from aqueous solution using vesicular basalt rock, Cogent Environ. Sci., 5 (2019) 1650416.