1. C. Namasivayam, D. Sangeetha, Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon, Bioresource Technol., 97 (2006) 1194–1200.
  2. FWPCA, Report of the Committee on Water Quality Criteria, Federal Water Pollution Control Administration, U.S. Department of Interior, 1968.
  3. S.M. Yobilishetty, K.V. Marathe, Removal of molybdenum(VI) from effluent waste water streams by cross flow micellar enhanced ultrafiltration (MEUF) using anionic, non-ionic and mixed surfactants, Indian J. Chem. Technol., 21 (2014) 321–327.
  4. Y. Zhao, A.I. Zouboulis, K.A. Matis, Removal of molybdate and arsenate from aqueous solutions by flotation, Sep. Sci. Technol., 31 (1996) 769–785.
  5. S. Nishihama, K. Yoshizuka, Ion exchange adsorption of molybdenum with zeolitic adsorbent, J. Environ. Manage., 19 (2009) 365–369.
  6. M.M. El-Moselhy, A.K. Sengupta, R. Smith, Carminic acid modified anion exchanger for the removal and preconcentration of Mo(VI) from wastewater, J. Hazard. Mater., 185 (2011) 442–446.
  7. A. Afkhami, B.E. Conway, Investigation of removal of Cr(VI),Mo(VI), W(VI), V(IV), and V(V) oxy-ions from industrial waste-waters by adsorption and electrosorption at high-area carbon cloth, J. Colloid Interface Sci., 251 (2002) 248–255.
  8. A. Afkhami, T. Madrakian, A. Amini, Mo(VI) and W(VI) removal from water samples by acid treated high area carbon cloth, Desalination, 243 (2009) 258–264.
  9. A. Afkhami, T. Madrakian, Z. Karimi, The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions, J. Hazard. Mater., 144 (2007) 427–431.
  10. B.C. Bostick, S. Fendorf, G.R. Helz, Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2), Environ. Sci. Technol., 37 (2003) 285–291.
  11. C.H. Wu, C.Y. Kuo, C.F. Lin, S.L. Lo, Modeling competitive adsorption of molybdate, sulfate, selenate, and selenite using a Freundlich type multicomponent isotherm, Chemosphere, 47 (2002) 283–292.
  12. H. Faghihian, A. Malekpour, M.G. Maragheh, Adsorption of molybdate ion by natrolite and clinoptilolite-rich tuffs, Int. J. Environ. Pollut., 18 (2002) 181–189.
  13. P. J. Phelan, S.V. Mattigod, Adsorption of molybdate anion (MoO42–) by sodium-saturated kaolinite, Clays Clay Miner., 32 (1984) 45–48.
  14. E.A. Elhadi, N. Matsue, T. Henmi, Effect of molybdate adsorption on some surface properties of nano-ball allophane, Clay Sci., 11 (2001) 405–416.
  15. P. Zhang, D.L. Sparks, Kinetics and mechanisms of molybdate adsorption/desorption at the goethite/water interface using pressure-jump relaxation, Soil Sci. Soc. Am. J., 53 (1989) 1028–1034.
  16. E. Guibal, C. Milot, J.M. Tobin, Metal-anion sorption by chitosan beads: equilibrium and kinetic studies, Ind. Eng. Chem. Res., 37 (1998) 1454–1463.
  17. J.C. Ryden, J.K. Syers, R.W. Tillman, Inorganic anion sorption and interactions with phosphate sorption by hydrous ferric oxide gel, Eur. J. Soil Sci., 38 (1987) 211–217.
  18. A. Mojiri, Z. Ahmad, R.M. Tajuddin, M.F. Arshad, V. Barrera, Molybdenum(VI) removal from aqueous solutions using bentonite and powdered cockle shell; optimization by response surface methodology, Global NEST J., 19 (2017) 232–240.
  19. B. Verbinnen, C. Block, D. Hannes, P. Lievens, M. Vaclavikova, K. Stefusova, G. Gallios, C. Vandecasteele, Removal of molybdate anions from water by adsorption on zeolitesupported magnetite, Water Environ. Res., 84 (2012) 753–760.
  20. S.L.C. Ferreira, H.M.C. Andrade, H.C. doe Santos, Characterization and determination of the thermodynamic and kinetic properties of the adsorption of the molybdenum(VI)- calmagite complex onto active carbon, J. Colloid Interface Sci., 270 (2004) 276–280.
  21. W.-X. Zhang, Nanoscale iron particles for environmental remediation: an overview, J. Nanopart. Res., 5 (2003) 323–332.
  22. C. Wang, W. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31 (1997) 2154–2156.
  23. J. Xu, A. Dozier, D. Bhattacharyya, Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds, J. Nanopart. Res., 7 (2005) 449–467.
  24. M.J. Alowitz, M.M. Scherer, Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal, Environ. Sci. Technol., 36 (2002) 299–306.
  25. S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of arsenic(III) from groundwater by nanoscale zero-valent iron, Environ. Sci. Technol., 39 (2005) 1291–1298.
  26. Y. Zhang, Y. Li, J. Li, G. Sheng, Y. Zhang, X. Zheng, Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron, Chem. Eng. J., 185 (2012) 243–249.
  27. L. Shi, X. Zhang, Z. Chen, Removal of chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron, Water Res., 45 (2011) 886–892.
  28. T. Liu, L. Zhao, D. Sun, X. Tan, Entrapment of nanoscale zerovalent iron in chitosan beads for hexavalent chromium removal from wastewater, J. Hazard. Mater., 184 (2010) 724–730.
  29. X. Lv, J. Xu, G. Jiang, X. Xu, Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes, Chemosphere, 85 (2011) 1204–1209.
  30. Y.H. Huang, C. Tang, H. Zeng, Removing molybdate from water using a hybridized zero-valent iron/magnetite/Fe(II) treatment system, Chem. Eng. J., 200 (2012) 257–263.
  31. R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered mesoporous carbons, Adv. Mater., 13 (2001) 677–681.
  32. A. Eftekhari, Z. Fan, Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion, Mater. Chem. Front., 1 (2017) 1001–1027.
  33. D. Zhao, Q. Huo, J. Feng, B.F Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120 (1998) 6024–6036.
  34. S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure, J. Am. Chem. Soc., 122 (2000) 10712–10713.
  35. X. Wang, C. Liang, S. Dai, Facile synthesis of ordered mesoporous carbons with high thermal stability by selfassembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions, Langmuir, 24 (2008) 7500–7505.
  36. J. Jin, N. Nishiyama, Y. Egashira, K. Ueyama, Pore structure and pore size controls of ordered mesoporous carbons prepared from resorcinol/formaldehyde/triblock polymers, Microporous Mesoporous Mater., 118 (2009) 218–223.
  37. L. Tang, G.-D. Yang, G.-M. Zeng, Y. Cai, S.-S. Li, Y.-Y. Zhou, Y. Pang, Y.-Y. Liu, Y. Zhang, B. Luna, Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study, Chem. Eng. J., 239 (2014) 114–122.
  38. Z. Sun, B. Sun, M. Qiao, J. Wei, Q. Yue, C. Wang, Y. Deng, S. Kaliaguine, D. Zhao, A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer–Tropsch synthesis, J. Am. Chem. Soc., 134 (2012) 17653–17660.
  39. M.J. Lázaro, L. Calvillo, E.G. Bordejé, R. Moliner, R. Juan, C.R. Ruiz, Functionalization of ordered mesoporous carbons synthesized with SBA-15 silica as template, Microporous Mesoporous Mater., 103 (2007) 158–165.
  40. M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Characterization of the porous structure of SBA-15, Chem. Mater., 12 (2000) 1961–1968.
  41. G. Newcombe, R. Hayes, M. Drikas, Granular activated carbon: importance of surface properties in the adsorption of naturally occurring organics, Colloids Surf., A, 78 (1993) 65–71.
  42. C.-C. Huang, S.-H. Shen, Adsorption of CO2 on chitosan modified CMK-3 at ambient temperature, J. Taiwan Inst. Chem. Eng., 44 (2013) 89–94.
  43. T.W. Kim, I.S. Park, R. Ryoo, A synthetic route to ordered mesoporous carbon materials with graphitic pore walls, Angew. Chem., 42 (2003) 4375–4379.
  44. M. Baikousi, A.B. Bourlinos, A. Douvali, T. Bakas, D.F. Anagnostopoulos, J. Tuček, K. Šafářová, R. Zboril, M.A. Karakassides, Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in removal of hexavalent chromium ions from aqueous solutions, Langmuir, 28 (2012) 3918–3930.
  45. D. Qian, Y. Su, Y. Huang, H. Chu, X. Zhou, Y. Zhang, Simultaneous molybdate (Mo(VI)) recovery and hazardous ions immobilization via nanoscale zerovalent iron, J. Hazard. Mater., 344 (2018) 698–706.
  46. T.L. Barr, An ESCA study of the termination of the passivation of elemental metals, J. Phys. Chem., 82 (1978) 1801–1810.
  47. G.T. Kim, T.K. Park, H. Chung, Y.T. Kim, M.H. Kwon, J.G. Choi, Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds, Appl. Surf. Sci., 152 (1999) 35–43.