1. R.E. Hester, R.M. Harrison, Carbon Capture: Sequestration and Storage, RSC Publishing, Cambridge, 2010.
  2. L. Li, N. Zhao, W. Wei, Y. Sun, A review of research progress on CO2 capture, storage, and utilization in Chinese academy of sciences, Fuel, 108 (2013) 112–130.
  3. N.A. Rashidi, S. Yusup, An overview of activated carbons utilization for the post-combustion carbon dioxide capture, J. CO2 Util., 13 (2016) 1–16.
  4. IEA, CO2 Capture at Power Stations and Other Point Sources: Zero Emission Technologies for Fossil Fuels, Organisation for Economic Co-operation and Development/International Energy Agency (OECD/IEA), Cedex, France, 2003.
  5. S.-Y. Lee, S.-J. Park, A review on solid adsorbents for carbon dioxide capture, J. Ind. Eng. Chem., 23 (2015) 1–11.
  6. R.T. Watson, Intergovernmental Panel on Climate Change, Climate Change 2001: Synthesis Report, Cambridge University Press, Cambridge, 2001.
  7. A. Alabadi, S. Razzaque, Y. Yang, S. Chen, B. Tan, Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity, Chem. Eng. J., 281 (2015) 606–612.
  8. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology—the U.S. Department of Energy’s Carbon Sequestration Program, Int. J. Greenhouse Gas Control, 2 (2008) 9–20.
  9. J. Gibbins, H. Chalmers, Carbon capture and storage, Energy Policy, 36 (2008) 4317–4322.
  10. E. Blomen, C. Hendriks, F. Neele, Capture technologies: improvements and promising developments, Energy Procedia, 1 (2009) 1505–1512.
  11. W.-J. Choi, J.-B. Seo, S.-Y. Jang, J.-H. Jung, K.-J. Oh, Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process, J. Environ. Sci., 21 (2009) 907–913.
  12. J. Gomes, S. Santos, J. Bordado, Choosing amine-based absorbents for CO2 capture, Environ. Technol., 36 (2015) 19–25.
  13. M. Gupta, I. Coyle, K. Thambimuthu, CO2 Capture Technologies and Opportunities in Canada, Strawman Document for CO2 Capture and Storage (CC&S) Technology Roadmap, CANMET Energy Technology Centre, Natural Resources Canada, Calgary, Alberta, Canada, 2003.
  14. A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci., 359 (2010) 115–125.
  15. H.Q. Yang, Z.H. Xu, M.H. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture: a review, J. Environ. Sci., 20 (2008) 14–27.
  16. N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C.S. Adjiman, C.K. Williams, N. Shah, P. Fennell, An overview of CO2 capture technologies, Energy Environ. Sci., 3 (2010) 1645–1669.
  17. S.M. Cohen, H.L. Chalmers, M.E. Webber, C.W. King, Comparing post-combustion CO2 capture operation at retrofitted coal-fired power plants in the Texas and Great Britain electric grids, Environ. Res. Lett., 6 (2011) 024001.
  18. S. García, M.V. Gil, C.F. Martín, J.J. Pis, F. Rubiera, C. Pevida, Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture, Chem. Eng. J., 171 (2011) 549–556.
  19. J.M. Valverde, F. Pontiga, C. Soria-Hoyo, M.A.S. Quintanilla, H. Moreno, F.J. Duran, M.J. Espin, Improving the gas-solids contact efficiency in a fluidized bed of CO2 adsorbent fine particles, Phys. Chem. Chem. Phys., 13 (2011) 14906–14909.
  20. J.-R. Li, Y.G. Ma, M.C. McCarthy, J. Sculley, J.M. Yu, H.-K. Jeong, P.B. Balbuena, H.-C. Zhou, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coord. Chem. Rev., 255 (2011) 1791–1823.
  21. M. Alonso, N. Rodríguez, B. González, G. Grasa, R. Murillo, J.C. Abanades, Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development, Int. J. Greenhouse Gas Control, 4 (2010) 167–173.
  22. F. Raganati, P. Ammendola, R. Chirone, CO2 capture by adsorption on fine activated carbons in a sound assisted fluidized bed, Chem. Eng. Trans., 43 (2015) 1033–1038.
  23. J.C. Abanades, E.J. Anthony, D.Y. Lu, C. Salvador, D. Alvarez, Capture of CO2 from combustion gases in a fluidized bed of CaO, AlChE J., 50 (2004) 1614–1622.
  24. J.M. Valverde, F.J. Duran, F. Pontiga, H. Moreno, CO2 capture enhancement in a fluidized bed of a modified Geldart C powder, Powder Technol., 224 (2012) 247–252.
  25. C.Z. Shen, J. Yu, P. Li, C.A. Grande, A.E. Rodrigues, Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads, Adsorption, 17 (2011) 179–188.
  26. A.I. Sarker, A. Aroonwilas, A. Veawab, Equilibrium and kinetic behavior of CO2 adsorption onto zeolites, carbon molecular sieve and activated carbons, Energy Procedia, 114 (2017) 2450–2459.
  27. N. Al-Janabi, R. Vakili, P. Kalumpasut, P. Gorgojo, F.R. Siperstein, X.L. Fan, P. McCloskey, Velocity variation effect in fixed bed columns: a case study of CO2 capture using porous solid adsorbents, AlChE J., 64 (2018) 2189–2197.
  28. C.Z. Shen, C.A. Grande, P. Li, J. Yu, A.E. Rodrigues, Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads, Ind. Eng. Chem. Res., 160 (2010) 398–407.
  29. S.C. Xiang, Y.B. He, Z.J. Zhang, H. Wu, W. Zhou, R. Krishna, B.L. Chen, Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions, Nat. Commun., 3 (2012) 954.
  30. K.O. Yoro, M. Singo, J.L. Mulopo, M.O. Daramola, Modeling and experimental study of the CO2 adsorption behavior of polyaspartamide as an adsorbent during post-combustion CO2 capture, Energy Procedia, 114 (2017) 1643–1664.
  31. C.Y. Lu, H.L. Bai, B. Wu, F.S. Su, J.F. Hwang, Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites, Energy Fuels, 22 (2008) 3050–3056.
  32. M.K. Al Mesfer, M. Danish, Y.M. Fahmy, M.M. Rashid, Postcombustion CO2 capture with activated carbons using fixed bed adsorption, Heat Mass Transfer, 54 (2018) 2715–2724.
  33. M.K. Al Mesfer, M. Danish, Breakthrough adsorption study of activated carbons for CO2 separation from flue gas, J. Environ. Chem. Eng., 6 (2018) 4514–4524.
  34. N. Dejang, O. Somprasit, S. Chindaruksa, A preparation of activated carbon from macadamia shell by microwave irradiation activation, 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies, Energy Procedia, 79 (2015) 727–732.
  35. M. Jahangiri, S.J. Shahtaheri, J. Adl, A. Rashidi, H. Kakooei, A.R. Forushani, G. Nasiri, A. Ghorbanali, M.R. Ganjali, Preparation of activated carbon from walnut shell and its utilization for manufacturing organic-vapor respirator cartridge, Fresenius Environ. Bull., 21 (2012) 1508–1514.
  36. E.M. Calvo-Muñoz, F.J. García-Mateos, J.M. Rosas, J. Rodríguez- Mirasol, T. Cordero, Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions, Front. Mater., 3 (2016) 23.
  37. A. Toprak, T. Kopac, Carbon dioxide adsorption using high surface area activated carbons from local coals modified by KOH, NaOH and ZnCl2 agents, Int. J. Chem. Reactor Eng., 15 (2017) 0042, doi:
  38. T.L.P. Dantas, S.M. Amorim, F.M.T. Luna, I.J. Silva Jr., D.C.S. de Azevedo, A.E. Rodrigues, R.F.P.M. Moreira, Adsorption of carbon dioxide onto activated carbon and nitrogen-enriched activated carbon: surface changes, equilibrium, and modeling of fixed-bed adsorption, Sep. Sci. Technol., 45 (2009) 73–84.
  39. M.J. Regufe, A.F.P. Ferreira, J.M. Loureiro, Y.X. Shi, A. Rodrigues, A.M. Ribeiro, New hybrid composite honeycomb monolith with 13X zeolite and activated carbon for CO2 capture, Adsorption, 24 (2018) 249–265.
  40. N.A.A. Qasem, R. Ben-Mansour, H.A. Habib, Enhancement of adsorption carbon capture capacity of 13X with optimal incorporation of carbon nanotubes, Int. J. Energy Environ. Eng., 8 (2017) 219–230.
  41. M.G. Plaza, I. Durán, N. Querejeta, F. Rubiera, C. Pevida, Experimental and simulation study of adsorption in postcombustion conditions using a microporous biochar. 1. CO2 and N2 adsorption, Ind. Eng. Chem. Res., 55 (2016) 3097–3112.
  42. Z.H. Zhang, B.D. Wang, Q. Sun, Fly ash-derived solid amine sorbents for CO2 capture from flue gas, Energy Procedia, 63 (2014) 2367–2373.
  43. A.R. Hidayu, N. Muda, Impregnated palm kernel shell activated carbon for CO2 adsorption by pressure swing adsorption, Indian J. Sci. Technol., 10 (2017) 1–6.
  44. P. Patil, S. Singh, Y.M. Kumar, Preparation and study of properties of activated carbon produced from agricultural and industrial waste shells, Res. J. Chem. Sci., 3 (2013) 12–15.
  45. H.Y. Xia, S. Cheng, L.B. Zhang, J.H. Peng, Utilization of walnut shell as a feedstock for preparing high surface area activated carbon by microwave induced activation: effect of activation agents, Green Process. Synth., 5 (2016) 7–14.
  46. M. Mataji, B. Khoshandam, Benzene adsorption on activated carbon from walnut shell, Chem. Eng. Commun., 201 (2014) 1294–1313.
  47. M.S. Shafeeyan, W.M.A.W. Daud, A. Shamiri, N. Aghamohammadi, Modeling of carbon dioxide adsorption onto ammonia-modified activated carbon: kinetic analysis and breakthrough behavior, Energy Fuels, 29 (2015) 6565–6577.
  48. E.R. Monazam, J. Spenik, L.J. Shadle, Fluid bed adsorption of carbon dioxide on immobilized polyethylenimine (PEI): kinetic analysis and breakthrough behaviour, Chem. Eng. J., 223 (2013) 795–805.
  49. R. Serna-Guerrero, A. Sayari, Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: kinetics and breakthrough curve, Chem. Eng. J., 161 (2010) 182–190.
  50. A.A. Pota, A.P. Mathews, Effects of particle stratification on fixed bed absorber performance, J. Environ. Eng., 125 (1999) 705–711.