References
- R.E. Hester, R.M. Harrison, Carbon Capture: Sequestration
and Storage, RSC Publishing, Cambridge, 2010.
- L. Li, N. Zhao, W. Wei, Y. Sun, A review of research progress
on CO2 capture, storage, and utilization in Chinese academy
of sciences, Fuel, 108 (2013) 112–130.
- N.A. Rashidi, S. Yusup, An overview of activated carbons
utilization for the post-combustion carbon dioxide capture,
J. CO2 Util., 13 (2016) 1–16.
- IEA, CO2 Capture at Power Stations and Other Point Sources:
Zero Emission Technologies for Fossil Fuels, Organisation
for Economic Co-operation and Development/International
Energy Agency (OECD/IEA), Cedex, France, 2003.
- S.-Y. Lee, S.-J. Park, A review on solid adsorbents for carbon
dioxide capture, J. Ind. Eng. Chem., 23 (2015) 1–11.
- R.T. Watson, Intergovernmental Panel on Climate Change,
Climate Change 2001: Synthesis Report, Cambridge University
Press, Cambridge, 2001.
- A. Alabadi, S. Razzaque, Y. Yang, S. Chen, B. Tan, Highly porous
activated carbon materials from carbonized biomass with
high CO2 capturing capacity, Chem. Eng. J., 281 (2015) 606–612.
- J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava,
Advances in CO2 capture technology—the U.S. Department of
Energy’s Carbon Sequestration Program, Int. J. Greenhouse Gas
Control, 2 (2008) 9–20.
- J. Gibbins, H. Chalmers, Carbon capture and storage, Energy
Policy, 36 (2008) 4317–4322.
- E. Blomen, C. Hendriks, F. Neele, Capture technologies:
improvements and promising developments, Energy Procedia,
1 (2009) 1505–1512.
- W.-J. Choi, J.-B. Seo, S.-Y. Jang, J.-H. Jung, K.-J. Oh, Removal
characteristics of CO2 using aqueous MEA/AMP solutions
in the absorption and regeneration process, J. Environ. Sci.,
21 (2009) 907–913.
- J. Gomes, S. Santos, J. Bordado, Choosing amine-based
absorbents for CO2 capture, Environ. Technol., 36 (2015) 19–25.
- M. Gupta, I. Coyle, K. Thambimuthu, CO2 Capture Technologies
and Opportunities in Canada, Strawman Document for CO2
Capture and Storage (CC&S) Technology Roadmap, CANMET
Energy Technology Centre, Natural Resources Canada, Calgary,
Alberta, Canada, 2003.
- A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane
technologies for CO2 separation, J. Membr. Sci., 359 (2010)
115–125.
- H.Q. Yang, Z.H. Xu, M.H. Fan, R. Gupta, R.B. Slimane,
A.E. Bland, I. Wright, Progress in carbon dioxide separation
and capture: a review, J. Environ. Sci., 20 (2008) 14–27.
- N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo,
G. Jackson, C.S. Adjiman, C.K. Williams, N. Shah, P. Fennell,
An overview of CO2 capture technologies, Energy Environ. Sci.,
3 (2010) 1645–1669.
- S.M. Cohen, H.L. Chalmers, M.E. Webber, C.W. King, Comparing
post-combustion CO2 capture operation at retrofitted coal-fired
power plants in the Texas and Great Britain electric grids,
Environ. Res. Lett., 6 (2011) 024001.
- S. García, M.V. Gil, C.F. Martín, J.J. Pis, F. Rubiera, C. Pevida,
Breakthrough adsorption study of a commercial activated
carbon for pre-combustion CO2 capture, Chem. Eng. J.,
171 (2011) 549–556.
- J.M. Valverde, F. Pontiga, C. Soria-Hoyo, M.A.S. Quintanilla,
H. Moreno, F.J. Duran, M.J. Espin, Improving the gas-solids
contact efficiency in a fluidized bed of CO2 adsorbent fine
particles, Phys. Chem. Chem. Phys., 13 (2011) 14906–14909.
- J.-R. Li, Y.G. Ma, M.C. McCarthy, J. Sculley, J.M. Yu, H.-K. Jeong,
P.B. Balbuena, H.-C. Zhou, Carbon dioxide capture-related
gas adsorption and separation in metal-organic frameworks,
Coord. Chem. Rev., 255 (2011) 1791–1823.
- M. Alonso, N. Rodríguez, B. González, G. Grasa, R. Murillo,
J.C. Abanades, Carbon dioxide capture from combustion flue
gases with a calcium oxide chemical loop. Experimental results
and process development, Int. J. Greenhouse Gas Control,
4 (2010) 167–173.
- F. Raganati, P. Ammendola, R. Chirone, CO2 capture by
adsorption on fine activated carbons in a sound assisted
fluidized bed, Chem. Eng. Trans., 43 (2015) 1033–1038.
- J.C. Abanades, E.J. Anthony, D.Y. Lu, C. Salvador, D. Alvarez,
Capture of CO2 from combustion gases in a fluidized bed of
CaO, AlChE J., 50 (2004) 1614–1622.
- J.M. Valverde, F.J. Duran, F. Pontiga, H. Moreno, CO2 capture
enhancement in a fluidized bed of a modified Geldart C
powder, Powder Technol., 224 (2012) 247–252.
- C.Z. Shen, J. Yu, P. Li, C.A. Grande, A.E. Rodrigues, Capture of
CO2 from flue gas by vacuum pressure swing adsorption using
activated carbon beads, Adsorption, 17 (2011) 179–188.
- A.I. Sarker, A. Aroonwilas, A. Veawab, Equilibrium and kinetic
behavior of CO2 adsorption onto zeolites, carbon molecular
sieve and activated carbons, Energy Procedia, 114 (2017)
2450–2459.
- N. Al-Janabi, R. Vakili, P. Kalumpasut, P. Gorgojo, F.R. Siperstein,
X.L. Fan, P. McCloskey, Velocity variation effect in fixed
bed columns: a case study of CO2 capture using porous solid
adsorbents, AlChE J., 64 (2018) 2189–2197.
- C.Z. Shen, C.A. Grande, P. Li, J. Yu, A.E. Rodrigues, Adsorption
equilibria and kinetics of CO2 and N2 on activated carbon beads,
Ind. Eng. Chem. Res., 160 (2010) 398–407.
- S.C. Xiang, Y.B. He, Z.J. Zhang, H. Wu, W. Zhou, R. Krishna,
B.L. Chen, Microporous metal-organic framework with
potential for carbon dioxide capture at ambient conditions, Nat.
Commun., 3 (2012) 954.
- K.O. Yoro, M. Singo, J.L. Mulopo, M.O. Daramola, Modeling
and experimental study of the CO2 adsorption behavior of
polyaspartamide as an adsorbent during post-combustion
CO2 capture, Energy Procedia, 114 (2017) 1643–1664.
- C.Y. Lu, H.L. Bai, B. Wu, F.S. Su, J.F. Hwang, Comparative study
of CO2 capture by carbon nanotubes, activated carbons, and
zeolites, Energy Fuels, 22 (2008) 3050–3056.
- M.K. Al Mesfer, M. Danish, Y.M. Fahmy, M.M. Rashid, Postcombustion
CO2 capture with activated carbons using fixed bed
adsorption, Heat Mass Transfer, 54 (2018) 2715–2724.
- M.K. Al Mesfer, M. Danish, Breakthrough adsorption study of
activated carbons for CO2 separation from flue gas, J. Environ.
Chem. Eng., 6 (2018) 4514–4524.
- N. Dejang, O. Somprasit, S. Chindaruksa, A preparation
of activated carbon from macadamia shell by microwave
irradiation activation, 2015 International Conference on
Alternative Energy in Developing Countries and Emerging
Economies, Energy Procedia, 79 (2015) 727–732.
- M. Jahangiri, S.J. Shahtaheri, J. Adl, A. Rashidi, H. Kakooei,
A.R. Forushani, G. Nasiri, A. Ghorbanali, M.R. Ganjali,
Preparation of activated carbon from walnut shell and its
utilization for manufacturing organic-vapor respirator
cartridge, Fresenius Environ. Bull., 21 (2012) 1508–1514.
- E.M. Calvo-Muñoz, F.J. García-Mateos, J.M. Rosas, J. Rodríguez-
Mirasol, T. Cordero, Biomass waste carbon materials as
adsorbents for CO2 capture under post-combustion conditions,
Front. Mater., 3 (2016) 23.
- A. Toprak, T. Kopac, Carbon dioxide adsorption using high
surface area activated carbons from local coals modified by
KOH, NaOH and ZnCl2 agents, Int. J. Chem. Reactor Eng., 15
(2017) 0042, doi: https://doi.org/10.1515/ijcre-2016-0042.
- T.L.P. Dantas, S.M. Amorim, F.M.T. Luna, I.J. Silva Jr.,
D.C.S. de Azevedo, A.E. Rodrigues, R.F.P.M. Moreira, Adsorption
of carbon dioxide onto activated carbon and nitrogen-enriched
activated carbon: surface changes, equilibrium, and modeling
of fixed-bed adsorption, Sep. Sci. Technol., 45 (2009) 73–84.
- M.J. Regufe, A.F.P. Ferreira, J.M. Loureiro, Y.X. Shi,
A. Rodrigues, A.M. Ribeiro, New hybrid composite
honeycomb monolith with 13X zeolite and activated carbon for
CO2 capture, Adsorption, 24 (2018) 249–265.
- N.A.A. Qasem, R. Ben-Mansour, H.A. Habib, Enhancement
of adsorption carbon capture capacity of 13X with optimal
incorporation of carbon nanotubes, Int. J. Energy Environ. Eng.,
8 (2017) 219–230.
- M.G. Plaza, I. Durán, N. Querejeta, F. Rubiera, C. Pevida,
Experimental and simulation study of adsorption in
postcombustion conditions using a microporous biochar. 1. CO2
and N2 adsorption, Ind. Eng. Chem. Res., 55 (2016) 3097–3112.
- Z.H. Zhang, B.D. Wang, Q. Sun, Fly ash-derived solid amine
sorbents for CO2 capture from flue gas, Energy Procedia,
63 (2014) 2367–2373.
- A.R. Hidayu, N. Muda, Impregnated palm kernel shell activated
carbon for CO2 adsorption by pressure swing adsorption,
Indian J. Sci. Technol., 10 (2017) 1–6.
- P. Patil, S. Singh, Y.M. Kumar, Preparation and study of
properties of activated carbon produced from agricultural and
industrial waste shells, Res. J. Chem. Sci., 3 (2013) 12–15.
- H.Y. Xia, S. Cheng, L.B. Zhang, J.H. Peng, Utilization of walnut
shell as a feedstock for preparing high surface area activated
carbon by microwave induced activation: effect of activation
agents, Green Process. Synth., 5 (2016) 7–14.
- M. Mataji, B. Khoshandam, Benzene adsorption on activated
carbon from walnut shell, Chem. Eng. Commun., 201 (2014)
1294–1313.
- M.S. Shafeeyan, W.M.A.W. Daud, A. Shamiri, N. Aghamohammadi,
Modeling of carbon dioxide adsorption onto
ammonia-modified activated carbon: kinetic analysis and
breakthrough behavior, Energy Fuels, 29 (2015) 6565–6577.
- E.R. Monazam, J. Spenik, L.J. Shadle, Fluid bed adsorption of
carbon dioxide on immobilized polyethylenimine (PEI): kinetic
analysis and breakthrough behaviour, Chem. Eng. J., 223 (2013)
795–805.
- R. Serna-Guerrero, A. Sayari, Modeling adsorption of CO2
on amine-functionalized mesoporous silica. 2: kinetics and
breakthrough curve, Chem. Eng. J., 161 (2010) 182–190.
- A.A. Pota, A.P. Mathews, Effects of particle stratification on
fixed bed absorber performance, J. Environ. Eng., 125 (1999)
705–711.