1. The World Bank, The Role of Desalination in an Increasingly Water Scarce World, Global Water Security, and Sanitation Partnership (GWSP), 2019. Available at:
  2. J.X. Lu, K. Foster, J. Murray, Biochemistry, Dissolution and Solubility, StatPearls Publishing, Florida, 2019.
  3. A. Alhamzah, C.M. Fellows, Apparent inhibition of thermal decomposition of hydrogencarbonate ion by poly(acrylic acid). The effect of molar mass and end-group functionality, Desalination, 332 (2014) 33–43.
  4. A.M. Shams El Din, R.A. Mohammed, Brine and scale chemistry in MSF distillers, Desalination, 99 (1994) 73–111.
  5. D. Hasson, M. Avriel, W. Resnick, T. Rozenman, S. Windreich, Mechanism of calcium carbonate scale deposition on heattransfer surfaces, Ind. Eng. Chem. Fundam., 7 (1968) 59–65.
  6. R.A. Dawe, Y.P. Zhang, Kinetics of calcium carbonate scaling using observations from glass micromodels, J. Pet. Sci. Eng., 18 (1997) 179–187.
  7. T. Østvold, P. Randhol, Kinetics of CaCO3 Scale Formation. The Influence of Temperature, Supersaturation and Ionic Composition, Society of Petroleum Engineers, International Symposium on Oilfield Scale, 30–31 January, Aberdeen, United Kingdom, 2001.
  8. S.F.E. Boerlage, Scaling and Particulate Fouling in Membrane Filtration Systems, Balkema Publishers, Netherlands, 2001.
  9. P.G. Vekilov, Two-step mechanism for the nucleation of crystals from solution, J. Cryst. Growth, 275 (2005) 65–76.
  10. S. Basu, A.K. Debnath, Chapter II – Main Equipment, S. Basu, A.K. Debnath, Eds., Power Plant Instrumentation and Control Handbook: A Guide to Thermal Power Plants, Academic Press, Boston, 2015, pp. 39–146.
  11. P.K. Abdul Azis, I. Al-Tisan, M. Al-Daili, T.N. Green, A.G.I. Dalvi, M.A. Javeed, Effects of environment on source water for desalination plants on the eastern coast of Saudi Arabia, Desalination, 132 (2000) 29–40.
  12. N.-C. Yang, W.-M. Ho, Y.-H. Chen, M.-L. Hu, A convenient one-step extraction of cellular ATP using boiling water for the luciferin–luciferase assay of ATP, Anal. Biochem., 306 (2002) 323–327.
  13. D.P. Kelly, A.P. Wood, S.L. Jordan, A.N. Padden, V.M. Gorlenko, G.A. Dubinina, Biological production and consumption of gaseous organic sulfur compounds, Biochem. Soc. Trans., 22 (1994) 1011–1015.
  14. V.P. Aneja, J.H. Overton, L.T. Cupitt, J.L. Durham, W.E. Wilson, Carbon disulfide and carbonyl sulfide from biogenic sources and their contributions to the global sulfur cycle, Nature, 282 (1979) 493–496.
  15. N.B. Nelson, D.A. Siegel, The global distribution and dynamics of chromophoric dissolved organic matter, Annu. Rev. Mar. Sci., 5 (2011) 447–476.
  16. S.T. Lennartz, M. von Hobe, D. Booge, H.C. Bittig, T. Fischer, R. Gonçalves-Araujo, K.B. Ksionzek, B.P. Koch, A. Bracher, R. Röttgers, B. Quack, C.A. Marandino, The influence of dissolved organic matter on the marine production of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Peruvian upwelling, Ocean Sci., 15 (2019) 1071–1090.
  17. W.L. Banwart, J.M. Bremner, Formation of volatile sulfur compounds by microbial decomposition of sulfur-containing amino acids in soils, Soil Biol. Biochem., 7 (1975) 359–364.
  18. D. Balla, A. Papageorgiou, D. Voutsa, Carbonyl compounds and dissolved organic carbon in rainwater of an urban atmosphere, Environ. Sci. Pollut. Res. Int., 21 (2014) 12062–12073.
  19. K. Boonprab, K. Matsuia, M. Yoshida, Y. Akakabe, A. Chirapart, T. Kajiwara, C6-aldehyde formation by fatty acid hydroperoxide lyase in the brown alga Laminaria angustata, Z. Naturforsch., C: Biosci., 58 (2003) 207–214.
  20. R.J. Kieber, L.H. Hydro, P.J. Seaton, Photooxidation of triglycerides and fatty acids in seawater: implication toward the formation of marine humic substances, Limnol. Oceanogr., 42 (1997) 1454–1462.
  21. Y.-S. Seo, H.-N. Bae, S.-H. Eom, K.-S. Lim, I.-H. Yun, Y.-H. Chung, J.-M. Jeon, H.-W. Kim, M.-S. Lee, Y.-B. Lee, Y.-M. Kim, Removal of off-flavors from sea tangle (Laminaria japonica) extract by fermentation with Aspergillus oryzae, Bioresour. Technol., 121 (2012) 475–479.
  22. I. Jerkovic, M. Kranjac, Z. Marijanovic, M. Roje, S. Jokić, Chemical diversity of headspace and volatile oil composition of two brown algae (Taonia atomaria and Padina pavonica) from the Adriatic Sea, Molecules, 24 (2019) 495, doi: 10.3390/ molecules24030495.
  23. T. Cserháti, E. Forgács, FLAVOR (FLAVOUR) COMPOUNDS: Structures and Characteristics, B. Caballero, Ed., Encyclopedia of Food Sciences and Nutrition, Academic Press, Oxford, 2003, pp. 2509–2517.
  24. X.-W. Chen, Y.-J. Chen, J.-M. Wang, J. Guo, S.-W. Yin, X.-Q. Yang, Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties, Food Funct., 7 (2016) 3694–3702.
  25. A. Dąbrowska, J. Nawrocki, E. Szeląg-Wasielewska, Appearance of aldehydes in the surface layer of lake waters, Environ. Monit. Assess., 186 (2014) 4569–4580.
  26. P. Astrahan, Monocyclic aromatic hydrocarbons (phthalates and BTEX) and aliphatic components in the SE Mediterranean costal sea-surface microlayer (SML): origins and phase distribution analysis, Mar. Chem., 205 (2018) 56–69.
  27. M.J. Pérez, E. Falqué, H. Domínguez, Antimicrobial action of compounds from marine seaweed, Mar. Drugs, 14 (2016) 52–61.
  28. R.S. Beissner, W.J. Guilford, R.M. Coates, L.P. Hager, Synthesis of brominated heptanones and bromoform by a bromoperoxidase of marine origin, Biochemistry, 20 (1981) 3724–3731.
  29. T. Lee, D. Park, K. Kim, S.M. Lim, N.H. Yu, S. Kim, H.-Y. Kim, K.S. Jung, J.Y. Jang, J.-C. Park, H.H. Ham, S.H. Lee, S.K. Hong, J.-C. Kim, Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species, Plant Pathol. J., 33 (2017) 499–507.
  30. J. Yu, Y. Kong, S.Q. Gao, L.H. Miao, P. Zou, B. Xu, C. Zeng, X.L. Zhang, Bacillus amyloliquefaciens T1 as a potential control agent for cyanobacteria, J. Appl. Phycol., 27 (2015) 1213–1221.
  31. T. Levring, H.A. Hoppe, O.J. Schmid, Marine Algae: A Survey of Research and Utilization, Botanica Marina Handbooks, Cram, deGruyter and Co., Hamburg, 1969.
  32. Y.-X. Li, Y. Li, Z.J. Qian, M.-M. Kim, S.-K. Kim, In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurencia undulata in free-radical-mediated oxidative systems, J. Microbiol. Biotechnol., 19 (2009) 1319–1327.
  33. C. Höckelmann, T. Moens, F. Jüttner, Odor compounds from cyanobacterial biofilms acting as attractants and repellents for free-living nematodes, Limnol. Oceanogr., 49 (2004) 1809–1819.
  34. H.J. Barth, The influence of cyanobacteria on oil polluted intertidal soils at the Saudi Arabian Gulf shores, Mar. Pollut. Bull., 46 (2003) 1245–1252.
  35. A. Manilal, S. Sujith, G. Seghal Kiran, J. Selvin, C. Shakir, Cytotoxic potentials of red alga, Laurencia brandenii collected from the Indian Coast, Global J. Pharmacol., 3 (2009) 90–94.
  36. Y.-Q. Gu, M.-H. Mo, J.-P. Zhou, C.-S. Zou, K.-Q. Zhang, Evaluation and identification of potential organic nematicidal volatiles from soil bacteria, Soil Biol. Biochem., 39 (2007) 2567–2575.
  37. I. Skjevrak, V. Lund, K. Ormerod, H. Herikstad, Volatile organic compounds in natural biofilm in polyethylene pipes supplied with lake water and treated water from the distribution network, Water Res., 39 (2005) 4133–4141.
  38. C. Höckelmann, F. Jüttner, Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema, Water Sci. Technol., 49 (2004) 47–54.
  39. J.L. O’Donoghue, Ketones of Six to Thirteen Carbons, Patty’s Toxicology, Rochester, 2012, pp. 807–914.
  40. I. Jerković, Z. Marijanović, M. Roje, P.M. Kuś, S. Jokić, R. Čož-Rakovac, Phytochemical study of the headspace volatile organic compounds of fresh algae and seagrass from the Adriatic Sea (single point collection), PLoS One, 13 (2018), https://doi. org/10.1371/journal.pone.0196462.
  41. C. Wildebrand, H. Glade, S. Will, M. Essig, J. Rieger, K.-H. Büchner, G. Brodt, Effects of process parameters and anti-scalants on scale formation in horizontal tube falling film evaporators, Desalination, 204 (2006) 448–463.