1. P. Wuamprakhon, A. Krittayavathananon, N. Ma, N. Phattharasupakun, T. Maihom, J. Limtrakul, M. Sawangphruk, Layered manganese oxide nanosheets coated on N-doped graphene aerogel for hydrazine detection: reaction mechanism investigated by in situ electrochemical X-ray absorption spectroscopy, J. Electroanal. Chem., 808 (2018) 124–132.
  2. H. Nakui, K. Okitsu, Y. Maeda, R. Nishimur, Hydrazine degradation by ultrasonic irradiation, J. Hazard. Mater., 146 (2007) 636–639.
  3. M.Y. Wang, W. Wang, M. Ji, X.L. Cheng, Adsorption of phenol and hydrazine upon pristine and X-decorated (X = Sc, Ti, Cr and Mn) MoS2 monolayer, Appl. Surf. Sci., 439 (2018) 350–363.
  4. K.V. Manukyan, A. Cross, S. Rouvimov, J. Miller, A.S. Mukasyan, E.E. Wolf, Low temperature decomposition of hydrous hydrazine over FeNi/Cu Nanoparticles, Appl. Catal. A, 476 (2014) 47–53.
  5. D.W. Johnson, M.W. Roberts, Adsorption of hydrazine and ammonia on aluminum, J. Electron Spectrosc. Relat. Phenom., 19 (1980)186–195.
  6. R. Dopheide, L. Schrijter, H. Zacharias, Adsorption and decomposition of hydrazine on Pd(100), Surf. Sci., 257 (1991) 86–96.
  7. I.J. Jang, H.S. Shin, N.R. Shin, S.H. Kim, S.K. Kim, M.J. Yu, S.J. Cho, Macroporous–mesoporous alumina supported iridium catalyst for hydrazine decomposition, Catal. Today, 185 (2012) 198–204.
  8. S.J. Cho, J. Lee, Y.S. Lee, D.P. Kim, Characterization of Iridium catalyst for decomposition of hydrazine hydrate for hydrogen generation, Catal. Lett., 109 (2006) 181–186.
  9. J. Sun, B.L. Liang, Y.Q. Huang, X.D. Wang, Synthesis of nanostructured tungsten carbonitride (WNxCy) by carbothermal ammonia reduction on activated carbon and its application in hydrazine decomposition, Catal. Today, 274 (2016) 123–128.
  10. K. Sunitha, P. Nikhitha, S.V. Satyanarayana, S. Sridhar, Recovery of hydrazine and glycerol from aqueous solutions by membrane separation techniques, Sep. Sci. Technol., 46 (2011) 2418–2426.
  11. H. Nakui, K. Okitsu, Y. Maeda, R. Nishimura, Effect of coal ash on hydrazine degradation under stirring and ultrasonic irradiation conditions, Ultrason. Sonochem., 15 (2008) 472–477.
  12. H. Nakui, K. Okitsu, Y. Maeda, R. Nishimura, Sonochemical decomposition of hydrazine in water: effects of coal ash and pH on the decomposition and adsorption behavior, Chemosphere, 76 (2009) 716–720.
  13. R. Tabaraki, A. Nateghi, Application of taguchi L16 orthogonal array design to optimize hydrazine biosorption by Sargassum ilicifolium, Environ. Prog. Sustainable Energy, 35 (2016) 1450–1457.
  14. A.L. Cazetta, T. Zhang, T.L. Silva, V.C. Almeida, Bone charderived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation, Appl. Catal., B, 225 (2018) 30–39.
  15. K. Yang, K.K. Yang, S.L. Zhang, Y. Luo, Q. Yao, Z.-H. Lu, Complete dehydrogenation of hydrazine borane and hydrazine catalyzed by MIL-101 supported NiFePd nanoparticles, J. Alloys Compd., 732 (2018) 363–371.
  16. C.Y. Liang, H.M. Lin, Q. Wang, E. Shi, S.H. Zhou, F. Zhang, F. Qu, G.S. Zhu, A redox-active covalent organic framework for the efficient detection and removal of hydrazine, J. Hazard. Mater., 381 (2020) 120983.
  17. F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today, 11 (1991) 173–301.
  18. N. Gerds, V. Katiyar, C.B. Koch, J. Risbo, D. Plackett, H.C.B. Hansen, Synthesis and characterization of laurateintercalated MgAl-layered double hydroxide prepared by co-precipitation, Appl. Clay Sci., 65–66 (2012) 143–151.
  19. M. Dinari, M.M. Momeni, Y. Ghayeb, Photodegradation of organic dye by ZnCrLa-layered double hydroxide as visiblelight photocatalysts, J. Mater. Sci.-Mater. Electron, 27 (2016) 9861–9869.
  20. M. Dinari, M.M. Momeni, Z. Bozorgmehr, S. Karimi, Bismuthcontaining layered double hydroxide as a novel efficient photocatalyst for degradation of methylene blue under visible light, J. Iran. Chem. Soc., 14 (2017) 695–701.
  21. M. Dinari, A. Haghighi, P. Asadi, Facile synthesis of ZnAl-EDTA layered double hydroxide/poly(vinyl alcohol) nanocomposites as an efficient adsorbent of Cd(II) ions from the aqueous solution, Appl. Clay Sci., 170 (2019) 21–28.
  22. O. Rahmanian, S. Amini, M. Dinari, Preparation of zinc/iron layered double hydroxide intercalated by citrate anion for capturing lead(II) from aqueous solution, J. Mol. Liq., 256 (2018) 9–15.
  23. O. Rahmanian, M. Dinari, M.K. Abdolmaleki, Carbon quantum dots/layered double hydroxide hybrid for fast and efficient decontamination of Cd(II): the adsorption kinetics and isotherms, Appl. Surf. Sci., 428 (2018) 272–279.
  24. M. Dinari, S. Neamati, Surface modified layered double hydroxide/polyaniline nanocomposites: synthesis, characterization and Pb2+ removal, Colloids Surf., A, 589 (2020) 124438.
  25. M. Dinari, M.A. Shirani, M.H. Maleki, R. Tabatabaeian, Green cross-linked bionanocomposite of magnetic layered double hydroxide/guar gum polymer as an efficient adsorbent of Cr(VI) from aqueous solution, Carbohydr. Polym., 236 (2020) 116070.
  26. W. Chen, L. Feng, B.J. Qu, In situ synthesis of poly(methyl methacrylate)/MgAl-layered double hydroxide nanocomposite with high transparency and enhanced thermal properties, Solid State Commun.,130 (2004) 259–263.
  27. X. Yuan, Y.F. Wang, J. Wang, C. Zhou, Q. Tang, X.B. Rao, Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal, Chem. Eng. J., 221 (2013) 204–213.
  28. S. Mallakpour, M. Dinari, M. Hatami, Novel nanocomposites of poly(vinyl alcohol) and MgAl-layered double hydroxide intercalated with diacid N-tetrabromophthaloyl-aspartic, J. Therm. Anal. Calorim., 120 (2015) 1293–1302.
  29. T. Kameda, H. Takeuchi, T. Yoshioka, Kinetics of uptake of Cu2+ and Cd2+ by MgAl-layered double hydroxides intercalated with citrate, malate, and tartrate, Colloids Surf., A, 355 (2010) 172–177.
  30. X.F. Zhang, L.Y. Ji, J. Wang, R. Li, Q. Liu, M.L. Zhang, L.H. Liu, Removal of uranium(VI) from aqueous solutions by magnetic MgAl-layered double hydroxide intercalated with citrate: kinetic and thermodynamic investigation, Colloids Surf., A, 414 (2010) 220–227.
  31. S. Velu, N. Shah, T.M. Jyothi, S. Sivasanker, Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of MgAl-layered double hydroxides, Microporous Mesoporous Mater., 33 (1999) 61–75.
  32. J. Arulraj, M. Rajamathi, Preparation of anionic clay–birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate, J. Solid State Chem., 198 (2013) 303–307.
  33. M. Raciulete, G. Layrac, F. Papa, C. Negrila, D. Tichit, I.C. Marcu, Influence of Mn content on the catalytic properties of Cu-(Mn)- Zn-Mg-Al mixed oxides derived from LDH precursors in the total oxidation of methane, Catal. Today, 306 (2018) 276–286.
  34. X.C. Zhu, H. Liu, D. Skala, Manganese carbonate-zinc glycerolate, synthesis, characterization and application as catalyst for transesterification of soybean oil, Chem. Ind. Chem. Eng. Q., 22 (2016) 431−443.
  35. J. Chen, L. Lv, J. He, L. Xv, Kinetic and equilibrium study on uptake of iodide ion by calcined layered double hydroxides, Desal. Water Treat., 42 (2012) 279–288.
  36. C. Gojon, B. Dureault, Spectrophotometric study of the reaction between hydrazine and p. dimethylaminobenzaldhyde, J. Nucl. Sci. Technol., 33 (1996) 731–735.
  37. K.U. Madhu, C.K. Mahadevan, Dielectric studies of manganese carbonate nanocrystals, Int. J. Eng. Res. Appl., 3 (2013) 2264–2267.
  38. S. Said, M. Raid, S. Mikhail, Preparation of different manganese oxide structures via controlling the concentration and the type of the alkaline media, Asian J. Nanosci. Mater., 2 (2019) 286–300.
  39. U. Costantino, F. Marmottini, M. Nocchetti, R. Vivani, New synthetic routes to hydrotalcite-like compounds-characterization and properties of the obtained materials, Eur. J. Inorg. Chem., 10 (1988) 1439–1446.
  40. K. Yang, L.-g. Yan, Y.-m. Yang, S.-j. Yu, R.-r. Shan, H.-q. Yu, B.-c. Zhu, B. Du, Adsorptive removal of phosphate by MgAl and Zn-Al-layered double hydroxides: kinetics, isotherms and mechanisms, Sep. Purif. Technol., 124 (2014) 36–42.
  41. H.H. Peng, L. Zhang, D.Y. Jiang, J. Chen, Facile synthesis of MnCO3 nanoparticles on Ni foam for binder-free super capacitor electrodes, Int. J. Electrochem. Sci., 12 (2017) 5898–5909.
  42. S.C. Sekhar, G. Nagaraju, J.S. Yu, Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudo capacitors, Appl. Surf. Sci., 435 (2018) 398–405.
  43. F.Y. Zeng, Y. Pan, Y. Yang, Q.L. Li, G.Y. Li, Z.H. Hou, G. Gu, Facile construction of Mn3O4-MnO2 hetero-nanorods/graphene nanocomposite for highly sensitive electrochemical detection of hydrogen peroxide, Electrochim. Acta, 196 (2016) 587–596.
  44. B. Dong, W. Li, X.X. Huang, Z.H. Ali, T. Zhang, Z. Yang, Y.L. Hou, Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol, Nano Energy, 55 (2019) 37–41.
  45. L. Yang, Z. Shahrivari, P.K.T. Liu, M. Sahimi, T.T. Tsotsis, Removal of trace levels of arsenic and selenium from aqueous solutions by calcined and uncalcined layered double hydroxides (LDH), Ind. Eng. Chem. Res., 44 (2005) 6804–6815.
  46. Y.W. Guo, Z.L. Zhu, Y.L. Qiu, J.F. Zhao, Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions, J. Hazard. Mater., 239–240 (2012) 279–288.
  47. T. Wang, C. Li, C.Q. Wang, H. Wang, Biochar/MnAl-LDH composites for Cu(ΙΙ) removal from aqueous solution, Colloids Surf., A, 538 (2018) 443–450.
  48. P.V. Vardhan, C. Jothilakshmi, U.K. Mudali, S. Devaraj, The effect of carbonate precursors on the capacitance properties of MnCO3, Mater. Today: Proc., 4 (2017) 12407–12415.
  49. L. Ding, Y.Y. Shu, A.Q. Wang, M.Y. Zheng, L. Li, X.D. Wang, T. Zhang, Preparation and catalytic performances of ternary phosphides NiCoP for hydrazine decomposition, Appl. Catal., A, 385 (2010) 232–237.
  50. R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, T. Hirotsu, Synthesis and phosphate uptake behavior of Zr4+ incorporated MgAl-layered double hydroxides, J. Colloid Interface Sci., 313 (2007) 53–63.
  51. H. Chen, Z. Yan, X.Y. Liu, X.L. Guo, Y.X. Zhang, Z.H. Liu, Rational design of microsphere and microcube MnCO3@MnO2 heterostructures for super capacitor electrodes, J. Power Sources, 353 (2017) 202–209.
  52. J. Zhao, Y. Li, Z.Y. Xu, D. Wang, C.L. Ban, H.H. Zhang, Unique porous Mn2O3/C cube decorated by Co3O4 nanoparticle: low cost and high-performance electrode materials for asymmetric super capacitors, Electrochim. Acta, 289 (2018) 72–81.
  53. A. Gagrani, B. Ding, T. Wang, T. Tsuzuki, pH dependent catalytic redox properties of Mn3O4 nanoparticles, Mater. Chem. Phys., 231 (2019) 41–47.
  54. S. Ruan, C. Ma, J. Wang, W. Qiao, L. Ling, Facile synthesis of graphene wrapped porous MnCO3 microspheres with enhanced surface capacitive effects for superior lithium storage, Chem. Eng. J., 367 (2019) 64–75.
  55. X.D. Wu, H. Yu, D. Weng, S. Liu, J. Fan, Synergistic effect between MnO and CeO2 in the physical mixture: electronic interaction and NO oxidation activity, J. Rare Earths, 31 (2013) 1141–1147.
  56. Y. Li, T. Gai, L. Shao, H. Tang, R. Li, S.L. Yang, S.F. Wang, Q. Wu, Y.M. Ren, Synthesis of sandwich-like Mn3O4@reduced graphene oxide nano-composites via modified Hummers’ method and its application as uranyl adsorbents, Heliyon, 5 (2019) e01972.
  57. S. Lee, C. Fan, T. Wu, S.L. Anderson, Hydrazine decomposition over Irn/Al2O3 model catalysts prepared by size-selected cluster deposition, J. Phys. Chem. B, 109 (2005) 381–388.
  58. C.-C. Liu, J.-M. Song, J.-F. Zhao, H.-J. Li, H.-S. Qian, H.-L. Niu, C.-J. Mao, S.-Y. Zhang, Y.-H. Shen, Facile synthesis of tremelliform Co0.85Se nanosheets: an efficient catalyst for the decomposition of hydrazine hydrate, Appl. Catal. B, 119–120 (2012) 139–145.