References

  1. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  2. N.F. Cardoso, E.C. Lima, B. Royer, M.V. Bach, G.L. Dotto, L.A.A. Pinto, T. Calvete, Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents, J. Hazard. Mater., 241–242 (2012) 146–153.
  3. A. Kausar, M. Iqbal, A. Javed, K. Aftab, Zill-i-Huma Nazli, H.N. Bhatti, S. Nouren, Dyes adsorption using clay and modified clay: a review, J. Mol. Liq., 256 (2018) 395–407.
  4. A. Kandelbauer, G.M. Guebitz, Bioremediation for the Decolorization of Textile Dyes — A Review, E. Lichtfouse, J. Schwarzbauer, D. Robert, Eds., Environmental Chemistry: Green Chemistry and Pollutants in Ecosystems, Springer, Berlin, 2005, pp. 269–288.
  5. S.M. Al-Rashed, A.A. Al-Gaid, Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye on Duolite C-20 resin, J. Saudi Chem. Soc., 16 (2012) 209–215.
  6. V. Sarria, M. Deront, P. Péringer, C. Pulgarin, Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron(III) photoassisted–biological treatment, Appl. Catal., B, 40 (2003) 231–246.
  7. A. Nezamzadeh-Ejhieh, M. Khorsandi, Heterogeneous photodecolorization of Eriochrome Black T using Ni/P zeolite catalyst, Desalination, 262 (2010) 79–85.
  8. B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review, Chem. Eng. Process., 109 (2016) 178–189.
  9. C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D, J. Chem. Technol. Biotechnol., 83 (2008) 769–776.
  10. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, J. Environ. Manage., 219 (2018) 189–207.
  11. T.W. Chen, Y.H. Zheng, J.-M. Lin, G.N. Chen, Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry, J. Am. Soc. Mass. Spectrom., 19 (2008) 997–1003.
  12. J.W. Fang, H.Q. Fan, G.Z. Dong, A facile way to synthesize cost-effective ZnO nanorods with enhanced photocatalytic activity, Mater. Lett., 120 (2014) 147–150.
  13. L.Q. Jiang, L. Gao, Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity, Mater. Chem. Phys., 91 (2005) 313–316.
  14. H. Anwar, B.C. Rana, Y. Javed, G. Mustafa, M.R. Ahmad, Y. Jamil, H. Akhtar, Effect of ZnO on photocatalytic degradation of Rh B and its inhibition activity for C. coli bacteria, Russ. J. Appl. Chem., 91 (2018) 143–149.
  15. R.D. Suryavanshi, S.V. Mohite, A.A. Bagade, S.K. Shaikh, J.B. Thorat, K.Y. Rajpure, Nanocrystalline immobilised ZnO photocatalyst for degradation of benzoic acid and methyl blue dye, Mater. Res. Bull., 101 (2018) 324–333.
  16. R. Ahumada-Lazo, L.M. Torres-Martínez, M.A. Ruíz-Gómez, O.E. Vega-Becerra, M.Z. Figueroa-Torres, Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique, Appl. Surf. Sci., 322 (2014) 35–40.
  17. S. Ghattavi, A. Nezamzadeh-Ejhieh, A brief study on the boosted photocatalytic activity of AgI/WO3/ZnO in the degradation of Methylene Blue under visible light irradiation, Desal. Water Treat., 166 (2019) 92–104.
  18. Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K. Wei, Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis, Inorg. Chem., 46 (2007) 6980–6986.
  19. M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Ag–ZnO catalysts for UV-photodegradation of methylene blue, Appl. Catal., B, 63 (2006) 305–312.
  20. N. Chekir, O. Benhabiles, D. Tassalit, N.A. Laoufi, F. Bentahar, Photocatalytic degradation of methylene blue in aqueous suspensions using TiO2 and ZnO, Desal. Water Treat., 57 (2016) 6141–6147.
  21. R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, A. Stephen, ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light, Mater. Sci. Eng. C, 33 (2013) 2235–2244.
  22. S. Kuriakose, V. Choudhary, B. Satpati, S. Mohapatra, Facile synthesis of Ag–ZnO hybrid nanospindles for highly efficient photocatalytic degradation of methyl orange, Phys. Chem. Chem. Phys., 16 (2014) 17560–17568.
  23. X.D. Zhang, Y.X. Wang, F.L. Hou, H.X. Li, Y. Yang, X.X. Zhang, Y.Q. Yang, Y. Wang, Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres, Appl. Surf. Sci., 391 (2017) 476–483.
  24. S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite, J. Phys. Chem. C, 117 (2013) 27023–27030.
  25. J. Lu, H.H. Wang, S.J. Dong, F.Q. Wang, Y.F. Dong, Effect of Ag shapes and surface compositions on the photocatalytic performance of Ag/ZnO nanorods, J. Alloys Compd., 617 (2014) 869–876.
  26. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  27. S. Das, S. Kar, S. Chaudhuri, Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process, J. Appl. Phys., 99 (2006) 114303.
  28. G. Kortüm, Reflectance Spectroscopy: Principles, Methods, Applications, Springer, Berlin, 1969.
  29. Z.-R. Lin, L. Zhao, Y.-H. Dong, Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction, Chemosphere, 141 (2015) 7–12.
  30. Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev., 117 (2017) 11302–11336.
  31. E.M. Rodríguez, G. Márquez, M. Tena, P.M. Álvarez, F.J. Beltrán, Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: the case of ofloxacin, Appl. Catal., B, 178 (2015) 44–53.
  32. W. Liu, M.L. Wang, C.X. Xu, S.F. Chen, X.L. Fu, Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study, J. Mol. Catal. A: Chem., 368–369 (2013) 9–15.
  33. E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association, Washington, 2012.
  34. T. Dambrauskas, K. Baltakys, A. Eisinas, S. Kitrys, The specific surface area and porosity of synthetic and calcined α-C2SH, kilchoanite and hydroxyledgrewite, Powder Technol., 355 (2019) 504–513.
  35. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73 (1951) 373–380.
  36. M. Arab Chamjangali, G. Bagherian, A. Javid, S. Boroumand, N. Farzaneh, Synthesis of Ag–ZnO with multiple rods (multipods) morphology and its application in the simultaneous photo-catalytic degradation of methyl orange and methylene blue, Spectrochim. Acta, Part A, 150 (2015) 230–237.
  37. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag–ZnO for Reactive Red 120 dye degradation with synergistic effect and dye-sensitized mechanism, Langmuir, 29 (2013) 939–949.
  38. M. Vinayagam, S. Ramachandran, V. Ramya, A. Sivasamy, Photocatalytic degradation of orange G dye using ZnO/biomass activated carbon nanocomposite, J. Environ. Chem. Eng., 6 (2018) 3726–3734.
  39. X.D. Zhang, Y. Yang, L. Song, Y.X. Wang, C. He, Z. Wang, L.F. Cui, High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation, Mol. Catal., 447 (2018) 80–89.
  40. X.D. Zhang, Y. Yang, X.T. Lv, Y.X. Wang, L.F. Cui, Effects of preparation method on the structure and catalytic activity of Ag–Fe2O3 catalysts derived from MOFs, Catalysts, 7 (2017) 1–13.
  41. Y.Q. Yang, H. Dong, Y. Wang, C. He, Y.X. Wang, X.D. Zhang, Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation, J. Solid State Chem., 258 (2018) 582–587.
  42. M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, K. Akhtar, M.M. Abdullah, Role of ZnO-CeO2 nanostructures as a photocatalyst and chemi-sensor, J. Mater. Sci. Technol., 27 (2011) 594–600.
  43. L.V. Trandafilović, D.J. Jovanović, X. Zhang, S. Ptasińska, M.D. Dramićanin, Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles, Appl. Catal., B, 203 (2017) 740–752.
  44. K.V. Kumar, K. Porkodi, F. Rocha, Langmuir–Hinshelwood kinetics – a theoretical study, Catal. Commun., 9 (2008) 82–84.
  45. S. Senobari, A. Nezamzadeh-Ejhieh, A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles, Spectrochim. Acta, Part A, 196 (2018) 334–343.
  46. X.Q. Chen, Z.S. Wu, D.D. Liu, Z.Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes, Nanoscale Res. Lett., 12 (2017) 143.