References

  1. N. Akther, A. Sodiq, A. Giwa, S. Daer, H.A. Arafat, S.W. Hasan, Recent advancements in forward osmosis desalination: a review, Chem. Eng. J., 281 (2015) 502–522.
  2. S. Lee, C. Boo, M. Elimelech, S. Hong, Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO), J. Membr. Sci., 365 (2010) 34–39.
  3. J.Y. Law, A.W. Mohammad, A study of forward osmosis performance and its application on sodium succinate feed solution using ionic salt draw solution, Int. J. Biomass Renewable, 5 (2016) 8–13.
  4. P.S. Goh, T. Matsuura, A.F. Ismail, N. Hilal, Recent trends in membranes and membrane processes for desalination, Desalination, 391 (2016) 43–60.
  5. Y.P. Chun, D. Mulcahy, L. Zou, I.S. Kim, A short review of membrane fouling in forward osmosis processes, Membranes (Basel), 7 (2017) 1–23.
  6. Y. Xu, X. Peng, C.Y. Tang, Q.S. Fu, S. Nie, Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module, J. Membr. Sci., 348 (2010) 298–309.
  7. P. Taylor, L. Chekli, S. Phuntsho, H.K. Shon, S. Vigneswaran, A. Chanan, A review of draw solutes in forward osmosis process and their use in modern applications, Desal. Water Treat., 43 (2012) 37–41.
  8. Q. Long, Y. Jia, J. Li, J. Yang, F. Liu, J. Zheng, B. Yu, Recent advance on draw solutes development in forward osmosis, Processes, 165 (2018) 1–20.
  9. B.-M. Jun, T.P.N. Nguyen, S.-H. Ahn, I.-C. Kim, Y.-N. Kwon, The application of polyethyleneimine draw solution in a combined forward osmosis/nanofiltration system, J. Appl. Polym. Sci., 132 (2015), https://doi.org/10.1002/app.42198.
  10. A. Achilli, T.Y. Cath, A.E. Childress, Selection of inorganic-based draw solutions for forward osmosis applications, J. Membr. Sci., 364 (2010) 233–241.
  11. A.F. Al-alalawy, T.R. Abbas, H.K. Mohammed, Comparative study for organic and inorganic draw solutions in forward osmosis osmotic pressure between feed and draw, Al-Khwarizmi Eng. J., 13 (2017) 94–102.
  12. Y.F. Cai, X.M. Hu, A critical review on draw solutes development for forward osmosis, Desalination, 391 (2016) 16–29.
  13. M.A. Dawoud, M.M. Al Mulla, Environmental impacts of seawater desalination: Arabian Gulf case study, Int. J. Environ. Sustainability, 1 (2012) 22–37.
  14. S. Manju, N. Sagar, Renewable energy integrated desalination: a sustainable solution to overcome future fresh-water scarcity in India, Renewable Sustainable Energy Rev., 73 (2017) 594–609.
  15. Q. Zhao, N. Chen, D. Zhao, X. Lu, Thermoresponsive magnetic nanoparticles for seawater desalination, ACS Appl. Mater. Interfaces, 5 (2013) 11453–11461.
  16. I. Yildiz, B.S. Yildiz, Applications of thermoresponsive magnetic nanoparticles, J. Nanomater., 2015 (2015) 1–12.
  17. D.L. Zhao, S.C. Chen, C.X. Guo, Q.P. Zhao, X.M. Lu, Multifunctional forward osmosis draw solutes for seawater desalination, Chin. J. Chem. Eng., 24 (2016) 23–30.
  18. J. Kim, H. Kang, Y.-S. Choi, Y.A. Yu, J.-C. Lee, Thermo-responsive oligomeric poly(tetrabutylphosphonium styrenesulfonate) s as draw solutes for forward osmosis (FO) applications, Desalination, 381 (2016) 84–94.
  19. R.L.G. Lecaros, Z.-C. Syu, Y.-H. Chiao, S.R. Wickramasinghe, Y.-L. Ji, Q.-F. An, W.-S. Hung, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Characterization of a thermoresponsive chitosan derivative as a potential draw solute for forward osmosis, Environ. Sci. Technol., 50 (2016) 11935–11942.
  20. R.W. Ou, Y.Q. Wang, H.T. Wang, T.W. Xu, Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process, Desalination, 318 (2013) 48–55.
  21. D. Li, X. Zhang, J.F. Yao, G.P. Simon, H.T. Wang, Stimuliresponsive polymer hydrogels as a new class of draw agent for forward osmosis desalination, Chem. Commun., 47 (2011) 1710.
  22. J. Wei, Z.-X. Low, R. Ou, G.P. Simon, H. Wang, Hydrogelpolyurethane interpenetrating network material as an advanced draw agent for forward osmosis process, Water Res., 96 (2016) 292–298.
  23. Y. Cai, R. Wang, W.B. Krantz, A.G. Fane, X.M. Hu, Exploration of using thermally responsive polyionic liquid hydrogels as draw agents in forward osmosis, RSC Adv., 5 (2015) 97143–97150.
  24. A. Razmjou, G.P. Simon, H. Wang, Effect of particle size on the performance of forward osmosis desalination by stimuliresponsive polymer hydrogels as a draw agent, Chem. Eng. J., 215–216 (2013) 913–920.
  25. Y. Hartanto, M. Zargar, X. Cui, Y. Shen, B. Jin, S. Dai, Thermoresponsive cationic copolymer microgels as high performance draw agents in forward osmosis desalination, J. Membr. Sci., 518 (2016) 273–281.
  26. Y. Hartanto, M. Zargar, H. Wang, B. Jin, S. Dai, Thermoresponsive acidic microgels as functional draw agents for forward osmosis desalination, Environ. Sci. Technol., 50 (2016) 4221–4228.
  27. Y.F. Cai, W.M. Shen, J. Wei, T.H. Chong, R. Wang, W.B. Krantz, A.G. Fane, X.M. Hu, Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes, Environ. Sci. Water Res. Technol., 1 (2015) 341–347.
  28. Y.J. Zhong, X.S. Feng, W. Chen, X. Wang, K.-W. Huang, Y. Gnanou, Z.P. Lai, Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water, Environ. Sci. Technol., 50 (2016) 1039–1045.
  29. E. Kamio, A. Takenaka, T. Takahashi, H. Matsuyama, Fundamental investigation of osmolality, thermo-responsive phase diagram, and water-drawing ability of ionic-liquidbased draw solution for forward osmosis membrane process, J. Membr. Sci., 570 (2018) 93–102.
  30. P.S. Nayan, S.M. Saufi, S.B. Abdullah, M.N. Abu Seman, M. Mohd Taib, Tetrabutylphosphonium trifluoroacetate ([P4444] CF3COO) thermoresponsive ionic liquid as a draw solution for forward osmosis process, Malaysian J. Anal. Sci., 22 (2018) 605–611.
  31. M.A.M. Abdullah, M.S. Man, S.N. Phang, M.S. Syed, S.B. Abdullah, Potential thermo-responsive ionic liquid as draw solution in forward osmosis application, J. Eng. Sci. Technol., 14 (2019) 1031–1042.
  32. H. Xiao, C. Yufeng, W. Rong, A Draw Solute for a Forward Osmosis, World Intellectual Property Organization, International Bureau, Australia, 2014.
  33. H.Y. Luo, Q. Wang, T.C. Zhang, T. Tao, A.J. Zhou, L. Chen, X.F. Bie, A review on the recovery methods of draw solutes in forward osmosis, J. Water Process Eng., 4 (2014) 212–223.
  34. Q. Ge, M. Ling, T.-S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future, J. Membr. Sci., 442 (2013) 225–237.
  35. D.J. Johnson, W.A. Suwaileh, A.W. Mohammed, N. Hilal, Osmotic’s potential: an overview of draw solutes for forward osmosis, Desalination, 434 (2018) 100–120.
  36. X. Xiaohua, Z. Liang, L. Xia, J. Shengxiang, Ionic liquids as additives in high performance liquid chromatography: analysis of amines and the interaction mechanism of ionic liquids, Anal. Chim. Acta, 519 (2004) 207–211.
  37. R. Hayes, G.G. Warr, R. Atkin, Structure and Nanostructure in Ionic Liquids, Chem. Rev., 115 (2006) 6357–6426.
  38. M.I. Cabac, M. Besnard, Y. Danten, J.A.P. Coutinho, C. De Lib, Solubility of CO2 in 1-butyl-3-methyl-imidazolium-trifluoro acetate ionic liquid studied by raman spectroscopy and DFT investigations, J. Phys. Chem. B, 115 (2011) 3538–3550.
  39. E. Alvarez-Guerra, S.P.M. Ventura, J.A.P. Coutinho, A. Irabien, Ionic liquid-based three phase partitioning (ILTPP) systems: ionic liquid recovery and recycling, Fluid Phase Equilib., 371 (2014) 67–74.
  40. R. Feng, D.B. Zhao, Y.J. Guo, Revisiting characteristics of ionic liquids: a review for further application development, J. Environ. Prot., 1 (2010) 95–104.
  41. M.S. Khan, C.S. Liew, K.A. Kurnia, B. Cornelius, B. Lal, Application of COSMO-RS in investigating ionic liquid as thermodynamic hydrate inhibitor for methane hydrate, Procedia Eng., 148 (2016) 862–869.
  42. J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem., 3 (2001) 156–164.
  43. M.S. Man, M.A.M. Abdullah, S.B. Abdullah, Z. Yaacob, Screening cation and anion of ionic liquid for dissolution of silicon dioxide using COSMO-RS, Indian J. Sci. Technol., 10 (2017) 1–6.
  44. M.J. Earle, K.R. Seddon, Ionic liquids: green solvents for the future, J. Electrochem. Soc., 72 (2000) 1391–1398.
  45. A.P.D.L. Ríos, A. Irabien, F. Hollmann, F. José, H. Fernández, Ionic liquids: green solvents for chemical processing, J. Chem., 2013 (2013) 2–4.
  46. C. Geun, Y. Pu, A.J. Ragauskas, Ionic liquids: promising green solvents for lignocellulosic biomass utilization, Curr. Opin. Green Sustainable Chem., 5 (2017) 5–11.
  47. A. Joseph, G. Żyła, V.I. Thomas, P.R. Nair, A.S. Padmanabhan, S. Mathew, Paramagnetic ionic liquids for advanced applications: a review, J. Mol. Liq., 218 (2016) 319–331.
  48. J.P. Hallett, T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis, Chem. Rev., 111 (2011) 3508–3576.
  49. Z.Y. Duan, Y.L. Gu, J. Zhang, L.Y. Zhu, Y.Q. Deng, Protic pyridinium ionic liquids: synthesis, acidity determination and their performances for acid catalysis, J. Mol. Catal. A: Chem., 250 (2006) 163–168.
  50. A. Abo-Hamad, M.A. AlSaadi, M. Hayyan, I. Juneidi, M.A. Hashim, Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review, Electrochim. Acta, 193 (2016) 321–343.
  51. S.A. Dharaskar, K.L. Wasewar, M.N. Varma, D.Z. Shende, K.K. Tadi, C.K. Yoo, Synthesis, characterization, and application of novel trihexyl tetradecyl phosphonium bis (2,4,4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel, Fuel Process. Technol., 123 (2014) 1–10.
  52. M. Grabda, M. Panigrahi, S. Oleszek, D. Kozak, F. Eckert, E. Shibata, T. Nakamura, COSMO-RS screening for efficient ionic liquid extraction solvents for NdCl3 and DyCl3, Fluid Phase Equilib., 383 (2014) 134–143.
  53. J.F. Wang, J.Q. Luo, S.C. Feng, H.R. Li, Y.H. Wan, X.P. Zhang, Recent development of ionic liquid membranes, Green Energy Environ., 1 (2016) 43–61.
  54. Ö. Gülcin, S. Senol, E. Meral, Optimization of lanthanum transport through supported liquid membranes based on ionic liquid, Chem. Eng. Res. Des., 140 (2018) 1–11.
  55. Q. Che, B. Sun, R. He, Preparation and characterization of new anhydrous, conducting membranes based on composites of ionic liquid trifluoroacetic propylamine and polymers of sulfonated poly (ether ether) ketone or polyvinylidenefluoride, Electrochim. Acta, 53 (2008) 4428–4434.
  56. J.L. Zhang, Z.P. Qin, L. Yang, H.X. Guo, S. Han, Activation promoted ionic liquid modification of reverse osmosis membrane towards enhanced permeability for desalination, J. Taiwan Inst. Chem. Eng., 80 (2017) 25–33.
  57. A.A. Askalany, A. Freni, G. Santori, Supported ionic liquid water sorbent for high throughput desalination and drying, Desalination, 452 (2019) 258–264.
  58. T. Hoshino, Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor, Desalination, 359 (2015) 59–63.
  59. Y.J. Zhong, X.B. Wang, X.S. Feng, S. Telalovic, Y. Gnanou, K.-W. Huang, X.M. Hu, Z.P. Lai, Osmotic heat engine using thermally responsive ionic liquids osmotic heat engine using thermally responsive ionic liquids, Environ. Sci. Technol., 51 (2017) 9403–9409.
  60. Y. Kohno, H. Ohno, Temperature-responsive ionic liquid/ water interfaces: relation between hydrophilicity of ions and dynamic phase change, Phys. Chem. Chem. Phys., 14 (2012) 5063–5070.
  61. K. Fukumoto, H. Ohno, LCST-type phase changes of a mixture of water and ionic liquids derived from amino acids, Angew. Chem. Int. Ed., 46 (2007) 1852–1855.
  62. S. Saita, Y. Kohno, H. Ohno, Detection of small differences in the hydrophilicity of ions using the LCST-type phase transition of an ionic liquid–water mixture, Chem. Commun., 49 (2013) 93–95.
  63. C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, Thermophysical properties of imidazoliumbased ionic liquids, J. Chem. Eng. Data, 49 (2004) 954–964.
  64. Y. Qiao, W. Ma, N. Theyssen, C. Chen, Z. Hou, Temperatureresponsive ionic liquids: fundamental behaviors and catalytic applications, Chem. Rev., 117 (2017) 6881–6928.
  65. A. Riisager, R. Fehrmann, R.W. Berg, R. van Hal, P. Wasserscheid, Thermomorphic phase separation in ionic liquid–organic liquid systems—conductivity and spectroscopic characterization, Phys. Chem. Chem. Phys., 7 (2005) 3052–3058.
  66. R. Vreekamp, D. Castellano, J. Ortega, F. Espiau, L. Fern, Thermodynamic behavior of the binaries 1-butylpyridinium tetrafluoroborate with water and alkanols: their interpretation using 1H NMR spectroscopy and quantum-chemistry calculations, J. Phys. Chem. B, 115 (2011) 8763–8774.
  67. P. Nockemann, B. Thijs, T.N. Parac-vogt, K. Van Hecke, L. Van Meervelt, B. Tinant, I. Hartenbach, T. Schleid, V.T. Ngan, M.T. Nguyen, K. Binnemans, Carboxyl-functionalized taskspecific ionic liquids for solubilizing metal oxides, Inorg. Chem., 47 (2008) 9987–9999.
  68. E. Sivertsen, T. Holt, W.R. Thelin, Concentration and temperature effects on water and salt permeabilities in osmosis and implications in pressure-retarded osmosis, Membranes (Basel), 8 (2018) 1–13.
  69. S. Dutta, K. Nath, Prospect of ionic liquids and deep eutectic solvents as new generation draw solution in forward osmosis process, J. Water Process Eng., 21 (2018) 163–176.
  70. D. Zhao, Developing Multifunctional Forward Osmosis (FO) Draw Solutes for Seawater Desalination, Ph.D Thesis, National University of Singapore, Singapore, 2015. Available at: https:// scholarbank.nus.edu.sg/handle/10635/122319
  71. M. Xie, W.E. Price, L.D. Nghiem, M. Elimelech, Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis, J. Membr. Sci., 438 (2013) 57–64.
  72. J.R. Mccutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci., 284 (2006) 237–247.
  73. W. Xu, Q. Ge, Novel functionalized forward osmosis (FO) membranes for FO desalination: improved process performance and fouling resistance, J. Membr. Sci., 555 (2018) 507–516.
  74. T. Chung, S. Zhang, K. Yu, J. Su, M. Ming, Forward osmosis processes: yesterday, today and tomorrow, Desalination 287 (2012) 78–81.
  75. J.M. Zhang, J. Wu, J. Yu, X.Y. Zhang, J.S. He, J. Zhang, Application of ionic liquids for dissolving cellulose and fabricating cellulosebased materials: state of the art and future trends, Mater. Chem. Front., 1 (2017) 1273–1290.
  76. F. Ibrahim, M. Moniruzzaman, S. Yusup, Y. Uemura, Dissolution of cellulose with ionic liquid in pressurized cell, J. Mol. Liq., 211 (2015) 370–372.
  77. M. Isik, H. Sardon, D. Mecerreyes, Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials, Int. J. Mol. Sci., 15 (2014) 11922–11940.
  78. S.D. Zhu, Y.X. Wu, Q.M. Chen, Z. Yu, C.W. Wang, S.W. Jin, Y.G. Ding, G. Wu, Dissolution of cellulose with ionic liquids and its application: a mini-review, Green Chem., 8 (2006) 325–327.
  79. A. Bhinder, S. Shabani, M. Sadrzadeh, Effect of Internal and External Concentration Polarizations on the Performance of Forward Osmosis Polarizations on the Performance of Forward Osmosis Process Process, In: Osmotically Driven Membrane Processes, 1st ed., IntechOpen, London, 2018, pp. 618–692.
  80. N. Bui, J.T. Arena, J.R. Mccutcheon, Proper accounting of mass transfer resistances in forward osmosis: improving the accuracy of model predictions of structural parameter, J. Membr. Sci., 492 (2015) 289–302.
  81. T.Y. Cath, M. Elimelech, J.R. Mccutcheon, R.L. Mcginnis, A. Achilli, D. Anastasio, A.R. Brady, A.E. Childress, I. V Farr, N.T. Hancock, J. Lampi, L.D. Nghiem, M. Xie, N. Yin, Standard methodology for evaluating membrane performance in osmotically driven membrane processes, Desalination, 312 (2013) 31–38.
  82. A. Deshmukh, N.Y. Yip, S. Lin, M. Elimelech, Desalination by forward osmosis: identifying performance limiting parameters through module-scale modeling, J. Membr. Sci., 491 (2015) 159–167.
  83. M. Wlazło, E.I. Alevizou, E.C. Voutsas, U. Domańska, Prediction of ionic liquids phase equilibrium with the COSMO-RS model, Fluid Phase Equilib., 424 (2016) 16–31.
  84. M. Lotfi, M.I.A. Mutalib, C.D. Wilfred, N.B. Alitheen, M. Goto, Analysis of multiple solvation interactions of methotrexate and ammonium based ionic liquids using COSMO-RS, Procedia Eng., 148 (2016) 459–466.
  85. A. Kamgar, F. Esmaeilzadeh, Prediction of H2S solubility in [HMIM][Pf6], [HMIM][BF4] and [HMIM][Tf2N] using UNIQUAC, NRTL and COSMO-RS, J. Mol. Liq., 220 (2016) 631–634.
  86. C.B. Bavoh, B. Lal, O. Nashed, M.S. Khan, K.K. Lau, M.A. Bustam, COSMO-RS: an ionic liquid pre-screening tool for gas hydrate mitigation, Chin. J. Chem. Eng., 24 (2016) 1619–1624.
  87. T. Zhou, L. Chen, Y.M. Ye, L.F. Chen, Z.W. Qi, H. Freund, K. Sundmacher, An overview of mutual solubility of ionic liquids and water predicted by COSMO-RS, Ind. Eng. Chem. Res., 51 (2012) 6256–6264.
  88. Z. Bai, H. Liu, Y. Liu, L. Wu, Prediction of the vapor– liquid equilibrium of chemical reactive systems containing formaldehyde using the COSMO-RS method, Fluid Phase Equilib., 415 (2016) 125–133.
  89. M. Moreno, F. Castiglione, A. Mele, C. Pasqui, G. Raos, Interaction of water with the model ionic liquid [BMIM][BF4]: molecular dynamics simulations and comparison with NMR data, J. Phys. Chem. B, 112 (2008) 7826–7836.
  90. M.H. Ghatee, A.R. Zolghadr, Local depolarization in hydrophobic and hydrophilic ionic liquids/water mixtures: car-parrinello and classical molecular dynamics simulation, J. Phys. Chem. C, 117 (2013) 2066–2077.
  91. S.M. Fatemi, M. Foroutan, Recent findings about ionic liquids mixtures obtained by molecular dynamics simulation, J. Nanostruct. Chem., 5 (2015) 243–253.
  92. J. Han, C. Dai, G. Yu, Z. Lei, Parameterization of COSMO-RS model for ionic liquids, Green Energy Environ., 3 (2018) 247–265.
  93. E.J. Maginn, Molecular simulation of ionic liquids: current status and future opportunities, J. Phys.: Condens. Matter, 21 (2009) 1–17.
  94. L.I.N. Tome, M. Jorge, J.R.B. Gomes, A.P. Coutinho, Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution, J. Phys. Chem. B, 116 (2012) 1831−1842.
  95. Y.L. Zhao, H.Y. Wang, Y.C. Pei, Z.P. Liu, J.J. Wang, Understanding the mechanism of LCST phase separation of mixed ionic liquids in water by MD simulations, Phys. Chem. Chem. Phys., 18 (2016) 23238–23245.
  96. X.C. Xu, C.J. Peng, H.L. Liu, Y. Hu, Modeling pVT properties and phase equilibria for systems containing ionic liquids using a new lattice-fluid equation of state, Ind. Eng. Chem. Res., 48 (2009) 11189–11201.
  97. L.D. Simoni, Y. Lin, J.F. Brennecke, M.A. Stadtherr, Modeling liquid–liquid equilibrium of ionic liquid systems with NRTL, Ind. Eng. Chem. Res., 47 (2008) 256–272.
  98. F.M. Maia, O. Rodríguez, E.A. Macedo, Fluid phase equilibria LLE for (water + ionic liquid) binary systems using [CxMIM] [BF4] (x = 6, 8) ionic liquids, Fluid Phase Equilib., 296 (2010) 184–191.
  99. A. Re, A. Marciniak, Solubility of 1-alkyl-3-ethylimidazoliumbased ionic liquids in water and 1-octanol, J. Chem. Eng. Data, 53 (2008) 1126–1132.
  100. A. Arce, M.J. Earle, S.P. Katdare, Phase equilibria of mixtures of mutually immiscible ionic liquids, Fluid Phase Equilib., 261 (2007) 427–433.
  101. A.L. Lydersen, Estimation of Critical Properties of Organic Compounds by the Method of Group Contributions, Engineering Experiment Station Report 3. College of Engineering, University of Wisconsin, Madison, 1955, p. 22.
  102. D. Ambrose, Correlation and Estimation of Vapor-Liquid Critical Properties: I. Critical Temperatures of Organic Compounds, Vol. 1, National Physics Laboratory, 1978, p. 35.
  103. K.M. Klincewicz, R.C. Reid, Estimation of critical properties with group contribution methods, AIChE J., 30 (1984) 137–142.
  104. K.G. Joback, R.C. Reid, Estimation of pure-component properties from group-contributions, Chem. Eng. Commun., 57 (1987) 233–243.
  105. J.O. Valderrama, V.H. Alvarez, A new group contribution method based on equation of state parameters to evaluate the critical properties of simple and complex molecules, Can. J. Chem. Eng., 84 (2006) 431–446.
  106. R. Farzi, F. Esmaeilzadeh, Fluid phase equilibria prediction of densities of pure ionic liquids using Esmaeilzadeh- Roshanfekr equation of state and critical properties from group contribution method, Fluid Phase Equilib., 423 (2016) 101–108.
  107. J.O. Valderrama, P.A. Robles, Critical properties, Normal boiling temperatures, and acentric factors of fifty ionic liquids, Ind. Eng. Chem. Res., 46 (2007) 1338–1344.
  108. H.G. Zeweldi, L.A. Limjuco, A.P. Bendoy, H. Kim, M. Jun, H. Kyong, E.M. Johnson, H. Lee, W. Chung, G.M. Nisola, The potential of monocationic imidazolium-, phosphonium-, and ammonium-based hydrophilic ionic liquids as draw solutes for forward osmosis, Desalination, 444 (2018) 94–106.
  109. M.H. Keshavarz, H.R. Pouretedal, E. Saberi, A simple method for prediction of density of ionic liquids through their molecular structure, J. Mol. Liq., 216 (2016) 732–737.
  110. K. Paduszy, U. Doma, A new group contribution method for prediction of density of pure ionic liquids over a wide range of temperature and pressure, Ind. Eng. Chem. Res., 51 (2012) 591–604.
  111. J.A. Lazzús, G. Pulgar-villarroel, F. Cuturrufo, P. Vega, Development of a group contribution method for estimating surface tension of ionic liquids over a wide range of temperatures, J. Mol. Liq., 240 (2017) 522–531.
  112. F. Gharagheizi, P. Ilani-kashkouli, A.H. Mohammadi, Group contribution model for estimation of surface tension of ionic liquids, Chem. Eng. Sci., 78 (2012) 204–208.
  113. J. Albert, K. Müller, A group contribution method for the thermal properties of ionic liquids, Ind. Eng. Chem. Res., 53 (2014) 17522–17526.
  114. K. Kamide, T. Dobashi, Chapter 5 – Colligative Properties and Virial Coefficients of Polymer Solutions, K. Kamide, T. Dobashi, Eds., Physical Chemistry Polymer Solutions, 1st ed., Theoretical Background, Elsevier B.V, Amsterdam, 2000, pp. 236–279.
  115. L.M. Surhone, M.T. Timpledon, S.F. Marseken, Van’t Hoff Factor, Betascript Publishing, Beau Bassin, Mauritius, 2010.
  116. M. Klahn, C. Stuber, A. Seduraman, P. Wu, What determines the miscibility of ionic liquids with water?, Identification of the underlying factors, J. Phys. Chem. B, 114 (2010) 2856–2868.
  117. D.L. Zhao, P. Wang, Q.P. Zhao, N.P. Chen, X.M. Lu, Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation, Desalination, 348 (2014) 26–32.
  118. K.S. Bowden, A. Achilli, A.E. Childress, Bioresource technology organic ionic salt draw solutions for osmotic membrane bioreactors, Bioresour. Technol., 122 (2012) 207–216.
  119. Z.F. Cui, Y. Jiang, R.W. Field, Fundamentals of Pressure-Driven Membrane Separation Processes, Z.F. Cui, H.S. Muralidhara, Eds., Membrane Technology, 1st ed., Elsevier Ltd., Oxford, 2010, pp. 1–18.
  120. M. Qasim, N.A. Darwish, S. Sarp, N. Hilal, Water desalination by forward (direct) osmosis phenomenon: a comprehensive review, Desalination, 374 (2015) 47–69.
  121. N. Kaushik, Membrane Separation Processes, 2nd ed., PHI Learning, Delhi, 2017.
  122. A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: a critical review, Water Res., 75 (2015) 164–187.