1. I. Ashlan, B. Akmehmet, Degradation of commerical reactive dyestuffs by heterogenous and homogenous advanced oxidation process: a comparative study, Dyes Pigm., 43 (1999) 95–108.
  2. A. Aguedach, S. Brosillon, J. Morvan, E.K. Lhadi, Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide, Appl. Catal., B, 57 (2005) 55–62.
  3. M. Ehrampoosh, G. Moussavi, M. Ghaneian, S. Rahimi, M. Ahmadian, Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process, J. Environ. Health Sci., 8 (2011) 34–40.
  4. N.M. Mahmoodi, M. Arami, N.Y. Limaee, Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: bench scale study, J. Hazard. Mater., 133 (2006) 113–118.
  5. A. Rahmani, J. Nouri, S. Kamal Ghadiri, A. Mahvi, M.R. Zare, Adsorption of fluoride from water by Al3+ and Fe3+ pretreated natural Iranian zeolites, Int. J. Environ. Sci., 4 (2010) 607–614.
  6. S. Nachiappan, K. Muthukumar, Intensification of textile effluent chemical oxygen demand reduction by innovative hybrid methods, Chem. Eng. J., 163 (2010) 344–354.
  7. H. Rahmania, A. Rahmanic, M. Yousefid, K. Rahmanid, Degradation of sulfamethoxazole antibacterial by sono-Fenton process using nano-zero valent iron: influence factors, kinetic and toxicity bioassay, Desal. Water Treat., 150 (2019) 220–227.
  8. M. Gholami, K. Rahmani, A. Rahmani, H. Rahmani, A. Esrafili, Oxidative degradation of clindamycin in aqueous solution using nanoscale zero-valent iron/H2O2/US, Desal. Water Treat., 57 (2016) 13878–13886.
  9. M. Fazlzadeh, A. Rahmani, H.R. Nasehinia, H. Rahmani, K. Rahmani, Degradation of sulfathiazole antibiotics in aqueous solutions by using zero valent iron nanoparticles and hydrogen peroxide, Koomesh, 18 (2016) 350–356.
  10. M. Hassaan, M.E. Katory, R.M. Ali, A.E. Nemr, Photocatalytic degradation of reactive black 5 using photo-Fenton and ZnO nanoparticles under UV irradiation, Egypt. J. Chem., 119 (2020) 17–18.
  11. M. Karimaei, B. Shokri, M.R. Khani, K. Yaghmaeian, A. Mesdaghinia, R. Nabizadeh, A.H. Mahvi, S. Nazmara, Comparative investigation of argon and argon/oxygen plasma performance for Perchloroethylene (PCE) removal from aqueous solution: optimization and kinetic study, J. Environ. Health Sci., 16 (2018) 277–287.
  12. H. Chen, Y. Cao, E. Wei, T. Gong, Q. Xian, Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water, Chemosphere, 146 (2016) 32–39.
  13. J. Zhang, Q. Liu, Y. Ding, Y. Bei, 3-aminopropyltriethoxysilane functionalized nanoscale zero-valent iron for the removal of dyes from aqueous solution, Pol. J. Chem. Technol., 13 (2011) 35–39.
  14. C.-H. Weng, Y.-T. Lin, C.-K. Chang, N. Liu, Decolourization of direct blue 15 by Fenton/ultrasonic process using a zerovalent iron aggregate catalyst, Ultrason. Sonochem., 20 (2013) 970–977.
  15. M. Karimaei, R. Nabizadeh, B. Shokri, M.R. Khani, K. Yaghmaeian, A. Mesdaghinia, A. Mahvi, S. Nazmara, Dielectric barrier discharge plasma as excellent method for Perchloroethylene removal from aqueous environments: degradation kinetic and parameters modeling, J. Mol. Liq., 248(2017) 177–183.
  16. M. Rismanchian, S. Barakat, N. Khoshzat, R. Keshavarzi, M. Shakerian, Investigation of TiO2/zeolite photocatalytic activity for Safranin dye removal of aqueous solution, Int. J. Environ. Health Eng., 4 (2015) 4–12, doi: 10.4103/2277-9183.153989.
  17. M. Kitis, S. Kaplan, E. Karakaya, N. Yigit, G. Civelekoglu, Adsorption of natural organic matter from waters by iron coated pumice, Chemosphere, 66 (2007) 130–138.
  18. T. Liu, Z.-L. Wang, Y. Sun, Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater, Chem. Eng. J., 263 (2015) 55–61.
  19. M. Yavuz, F. Gode, E. Pehlivan, S. Ozmert, Y.C. Sharma, An economic removal of Cu2+ and Cr3+ on the new adsorbents: pumice and polyacrylonitrile/pumice composite, Chem. Eng. J., 137 (2008) 453–461.
  20. B. Xu, F. Wu, X. Zhao, H. Liao, Benzotriazole removal from water by Zn–Al–O binary metal oxide adsorbent: behavior, kinetics and mechanism, J. Hazard. Mater., 184 (2010) 147–155.
  21. S. Saravanan, T. Sivasankar, Ultrasound-assisted Fenton’s treatment of Reactive Black 5 dye: effect of system parameters, kinetics and mechanism, Desal. Water Treat., 56 (2015) 492–501.
  22. A. Yazdanbakhsh, A. Rahmani, M. Massoudinejad, M. Jafari, M. Dashtdar, Accelerating the solar disinfection process of water using modified compound parabolic concentrators (CPCs) mirror, Desal. Water Treat., 57 (2016) 23719–23727.
  23. M. Ahmadi, K. Rahmani, A. Rahmani, H. Rahmani, Removal of benzotriazole by photo-Fenton like process using nano zerovalent iron: response surface methodology with a Box–Behnken design, Pol. J. Chem. Technol., 19 (2017) 104–112.
  24. M. Farzadkia, K. Rahmani, M. Gholami, A. Esrafili, A. Rahmani, H. Rahmani, Investigation of photocatalytic degradation of clindamycin antibiotic by using nano-ZnO catalysts, Korean J. Chem. Eng., 31 (2014) 2014–2019.
  25. A.V. Emeline, V.N. Kuznetsov, V.K. Rybchuk, N. Serpone, Visible-light-active titania photocatalysts: the case of N-doped s—properties and some fundamental issues, Int. J. Photoenergy, 2008 (2008) 1–20, doi: 10.1155/2008/258394.
  26. S. Sato, R. Nakamura, S. Abe, Visible-light sensitization of TiO2 photocatalysts by wet-method N doping, Appl. Catal., A, 284 (2005) 131–137.
  27. B.I. Harman, M. Genisoglu, Synthesis and characterization of pumice-supported nZVI for removal of copper from waters, Adv. Mater. Sci. Eng., 2016 (2016) 1–10, doi: 10.1155/2016/4372136.
  28. C. Lai, S. Lo, H. Chiang, Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses, Chemosphere, 41 (2000) 1249–1255.
  29. Ç. Üzüm, T. Shahwan, A.E. Eroğlu, K.R. Hallam, T.B. Scott, I. Lieberwirth, Synthesis and characterization of kaolinitesupported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci., 43 (2009) 172–181.
  30. A. Garg, V.K. Sangal, P.K. Bajpai, Decolorization and degradation of Reactive Black 5 dye by photocatalysis: modeling, optimization and kinetic study, Desal. Water Treat., 57 (2016) 18003–18015.
  31. M. Muruganandham, N. Sobana, M. Swaminathan, Solar assisted photocatalytic and photochemical degradation of Reactive Black 5, J. Hazard. Mater., 137 (2006) 1371–1376.
  32. C.-L. Hsueh, Y.-H. Huang, C.-C. Wang, C.-Y. Chen, Photoassisted fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH, J. Mol. Catal. A: Chem., 245 (2006) 78–86.
  33. I.A. Alaton, I.A. Balcioglu, Photochemical and heterogeneous photocatalytic degradation of waste vinylsulphone dyes: a case study with hydrolyzed Reactive Black 5, J. Photochem. Photobiol., A, 141 (2001) 247–254.
  34. I. Arslan, I.A. Balciogˇlu, T. Tuhkanen, Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton’s reagent, Chemosphere, 39 (1999) 2767–2783.
  35. H. Lade, S. Govindwar, D. Paul, Mineralization and detoxification of the carcinogenic azo dye Congo red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor, Int. J. Environ. Res. Public Health, 12 (2015) 6894–6918.
  36. A. Rahmani, A. Asadi, A. Fatehizadeh, A.R. Rahmani, M.R. Zare, Interactions of Cd, Cr, Pb, Ni, and Hg in their effects on activated sludge bacteria by using two analytical methods, Environ. Monit. Assess., 191 (2019) 1124–1132, doi: 10.1007/ s10661-019-7241-6.
  37. M.-R. Zare, M.-M. Amin, M. Nikaeen, M. Zare, B. Bina, A. Fatehizadeh, A. Rahmani, M. Ghasemian, Simplification and sensitivity study of Alamar Blue bioassay for toxicity assessment in liquid media, Desal. Water Treat., 57 (2016) 10934–10940.
  38. M.-R. Zare, M.-M. Amin, M. Nikaeen, B. Bina, A. Rahmani, S. Hemmati-Borji, H. Rahmani, Acute toxicity of Hg, Cd, and Pb towards dominant bacterial strains of sequencing batch reactor (SBR), Environ. Monit. Assess., 187 (2015) 263–270, doi: 10.1007/ s10661-015-4457-y.