References

  1. J.R. Bacon, N.S. Dinev, Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria, Environ. Pollut., 134 (2005) 247–255.
  2. V. Ettler, M. Mihaljevič, M. Komárek, ICP-MS measurements of lead isotopic ratios in soils heavily contaminated by lead smelting: tracing the sources of pollution, Anal. Bioanal. Chem., 378 (2004) 311–317.
  3. M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical precipitation of lead from lead battery recycling plant wastewater, Ind. Eng. Chem. Res., 41 (2002) 1579–1582.
  4. Y.-F. Zhang, Z.-L. Xu, Study on the treatment of industrial wastewater containing Pb2+ ion using a coupling process of polymer complexation-ultrafiltration, Sep. Sci. Technol., 38 (2003) 1585–1596.
  5. A. Supong, P.C. Bhomick, M. Baruah, C. Pongener, U.B. Sinha, D. Sinha, Adsorptive removal of bisphenol a by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations, Sustainable Chem. Pharm., 13 (2019) 100159, doi: 10.1016/j.scp.2019.100159.
  6. F. Xu, D.-l. Ouyang, E.R. Rene, H.Y. Ng, L.-l. Guo, Y.-j. Zhu, L.-l. Zhou, Q. Yuan, M.-s. Miao, Q. Wang, Q. Kong, Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater, Bioresour. Technol., 288 (2019) 121462, doi: 10.1016/j.biortech.2019.121462.
  7. S. Tong, Y.E.v. Schirnding, T. Prapamontol, Environmental lead exposure: a public health problem of global dimensions, Bull. World Health Organ., 78 (2000) 1068–1077.
  8. O.A. Ramírez, O.M. Abdeldayem, A. Pugazhendhi, E.R. Rene, Current updates and perspectives of biosorption technology: an alternative for the removal of heavy metals from wastewater, Curr. Pollut. Rep., 6 (2020) 8–27.
  9. E. Suhartono, Y.W. Ulfarini, T. Triawanti, W.A. Mustaqim, R.T. Firdaus, M.H.M. Setiawan, Increased bone calcium dissociation in lead-exposed rats, Universa Med., 31 (2015) 151–158.
  10. E. Baker, P. Landrigan, A. Barbour, D. Cox, D. Folland, R. Ligo, J. Throckmorton, Occupational lead poisoning in the United States: clinical and biochemical findings related to blood lead levels, Occup. Environ. Med., 36 (1979) 314–322.
  11. L. Gerhardsson, D.R. Chettle, V. Englyst, G.F. Nordberg, H. Nyhlin, M.C. Scott, A.C. Todd, O. Vesterberg, Kidney effects in long term exposed lead smelter workers, Br. J. Ind. Med., 49 (1992) 186–192.
  12. A. Kumar, P.K. Dey, P.N. Singla, R.S. Ambasht, S.K. Upadhyay, Blood lead levels in children with neurological disorders, J. Trop. Pediatr., 44 (1998) 320–322.
  13. B. Somashekaraiah, B. Venkaiah, A. Prasad, Biochemical diagnosis of occupational exposure to lead toxicity, Bull. Environ. Contam. Toxicol., 44 (1990) 268–275.
  14. P.C. Mishra, R.K. Patel, Removal of lead and zinc ions from water by low cost adsorbents, J. Hazard. Mater., 168 (2009) 319–325.
  15. EPB, Environmental quality Standards for Surface Water (GB 3838–2002), Environmental Protection Bureau, Beijing, 2002.
  16. L. Singh Thakur, Heavy metal Cu, Ni and Zn: Toxicity, health hazards and their removal techniques by low cost adsorbents: a short overview, Int. J. Plant. Sci., 3 (2013) 143–157.
  17. M. Naushad, Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J., 235 (2014) 100–108.
  18. A.A.H. Faisal, S.F.A. Al-Wakel, H.A. Assi, L.A. Naji, M. Naushad, Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater, J. Water Process. Eng., 33 (2020) 101112, doi: 10.1016/j. jwpe.2019.101112.
  19. M. Naushad, A. Mittal, M. Rathore, V. Gupta, Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger, Desal. Water Treat., 54 (2015) 2883–2890.
  20. D. Lakherwal, Adsorption of heavy metals: a review, Int. J. Environ. Res. Dev., 4 (2014) 41–48.
  21. K.Y. Foo, B.H. Hameed, An overview of landfill leachate treatment via activated carbon adsorption process, J. Hazard. Mater., 171 (2009) 54–60.
  22. S.M. Yakout, A.E.H.M. Daifullah, S.A. El-Reefy, Pore structure characterization of chemically modified biochar derived from rice straw, Environ. Eng. Manage. J., 14 (2015) 473–480.
  23. W. Gwenzi, N. Chaukura, C. Noubactep, F.N.D. Mukome, Biochar-based water treatment systems as a potential lowcost and sustainable technology for clean water provision, J. Environ. Manage., 197 (2017) 732–749.
  24. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19–33.
  25. M. Inyang, B. Gao, Y. Yao, Y. Xue, A.R. Zimmerman, P. Pullammanappallil, X. Cao, Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass, Bioresour. Technol., 110 (2012) 50–56.
  26. Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao, Sorption of heavy metals on chitosan-modified biochars and its biological effects, Chem. Eng. J., 231 (2013) 512–518.
  27. T.A. Saleh, M. Tuzen, A. Sarı, Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from waters, J. Environ. Chem. Eng., 5 (2017) 2853–2860.
  28. R. Shan, Y. Shi, J. Gu, Y. Wang, H. Yuan, Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems, Chin. J. Chem. Eng., 28 (2020) 1375–1383.
  29. B. Chen, Z. Chen, S. Lv, A novel magnetic biochar efficiently sorbs organic pollutants and phosphate, Bioresour. Technol., 102 (2011) 716–723.
  30. I. Šafařík, K. Nymburská, M. Šafaříková, Adsorption of watersoluble organic dyes on magnetic charcoal, J. Chem. Technol., 69 (1997) 1–4.
  31. G. Zhang, J. Qu, H. Liu, A.T. Cooper, R.J.C. Wu, CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration, Chemosphere, 68 (2007) 1058–1066.
  32. S. Liu, H.A. Wiatrowski, Reduction of Hg(II) to Hg(0) by magnetite from two magnetotactic bacterial, Geomicrobiol. J., 43 (2009) 5307–5313.
  33. N. Subedi, A. Lähde, E. Abu-Danso, J. Iqbal, A. Bhatnagar, A comparative study of magnetic chitosan (Chi@Fe3O4) and graphene oxide modified magnetic chitosan (Chi@Fe3O4GO) nanocomposites for efficient removal of Cr(VI) from water, Int. J. Biol. Macromol., 137 (2019) 948–959.
  34. M. Imran, Z.U.H. Khan, J. Iqbal, N.S. Shah, M. Rizwan, Potential of siltstone and its composites with biochar and magnetite nanoparticles for the removal of cadmium from contaminated aqueous solutions: batch and column scale studies, Environ. Pollut., 259 (2020) 113938, doi: 10.1016/j.envpol.2020.113938.
  35. D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco, C.U. Pittman, Development of magnetic activated carbon from almond shells for trinitrophenol removal from water, Chem. Eng. J., 172 (2011) 1111–1125.
  36. M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.-K. Sung, J.E. Yang, Y.S. Ok, Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol., 118 (2012) 536–544.
  37. N. Mahinpey, P. Murugan, T. Mani, R. Raina, Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor, Energy Fuel, 23 (2009) 2736–2742.
  38. A. Samsuri, F. Sadegh-Zadeh, B. Seh-Bardan, Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals, Int. J. Environ. Sci. Technol., 11 (2014) 967–976.
  39. J. Lu, C. Zhang, J. Wu, Y. Luo, Adsorptive removal of bisphenol a using N-doped biochar made of Ulva prolifera, Water Air Soil Pollut., 228 (2017) 327, doi: 10.1007/s11270-017-3516-0.
  40. N. Silanikove, Effect of CaO-OR NaOH-hydrogen peroxide treatments on the composition and in-vitro digestibility of cotton straw, Bioresour. Technol., 48 (1994) 71–73.
  41. M. Hussain, M. Imran, G. Abbas, M. Shahid, M. Iqbal, M.A. Naeem, B. Murtaza, M. Amjad, N.S. Shah, Z. Ul Haq Khan, A. Ul Islam, A new biochar from cotton stalks for As(V) removal from aqueous solutions: its improvement with H3PO4 and KOH, Environ. Geochem. Health, 42 (2019) 2519–2534.
  42. Y.-d. Du, H.-q. Liu, L. Shu, Y. Feng, Q. Kong, F. Xu, Q. Wang, C.-c. Zhao, Adsorption of ofloxacin from aqueous solution using low-cost biochar obtained from cotton stalk, Desal. Water Treat., 135 (2018) 372–380.
  43. Z. Wang, H. Guo, F. Shen, G. Yang, Y. Zhang, Y. Zeng, L. Wang, H. Xiao, S. Deng, Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3), and phosphate (PO43−), Chemosphere, 119 (2015) 646–653.
  44. L. GaParovi, Z. Koreňová, U. Jelemensky, Kinetic study of wood chips decomposition by TGA, Chem. Pap., 64 (2010) 174–181.
  45. I.I. Gurten, M. Ozmak, E. Yagmur, Z. Aktas, Preparation and characterisation of activated carbon from waste tea using K2CO3, Biomass Bioenergy, 37 (2012) 73–81.
  46. K. Fu, Q. Yue, B. Gao, Y. Sun, L. Zhu, Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation, Chem. Eng. J., 228 (2013) 1074–1082.
  47. A.-Y. Wang, K. Sun, L. Wu, P. Wu, W. Zeng, Z. Tian, Q.-X. Huang, Co-carbonization of biomass and oily sludge to prepare sulfamethoxazole super-adsorbent materials, Sci. Total Environ., 698 (2020) 134238, doi: 10.1016/j. scitotenv.2019.134238.
  48. R. Li, H. Deng, X. Zhang, J.J. Wang, M.K. Awasthi, Q. Wang, R. Xiao, B. Zhou, J. Du, Z. Zhang, High-efficiency removal of Pb(II) and humate by a CeO2–MoS2 hybrid magnetic biochar, Bioresour. Technol., 273 (2019) 335–340.
  49. Y. Zhao, R. Zhang, H. Liu, M. Li, T. Chen, D. Chen, X. Zou, R.L. Frost, Green preparation of magnetic biochar for the effective accumulation of Pb(II): performance and mechanism, Chem. Eng. J., 375 (2019) 122011, doi: 10.1016/j.cej.2019.122011.
  50. C. Sun, T. Chen, Q. Huang, J. Wang, S. Lu, J. Yan, Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification, Environ. Sci. Pollut. Res., 26 (2019) 8902–8913.
  51. F. Lian, G. Cui, Z. Liu, L. Duo, G. Zhang, B. Xing, One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity, J. Environ. Manage., 176 (2016) 61–68.
  52. Y.-n. Wang, Q. Liu, L. Shu, M.-s. Miao, Y.-z. Liu, Q. Kong, Removal of Cr(VI) from aqueous solution using Fe-modified activated carbon prepared from luffa sponge: kinetic, thermodynamic, and isotherm studies, Desal. Water Treat., 57 (2016) 29467–29478.
  53. C. Wang, H. Wang, Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles, Chemosphere, 192 (2018) 1–4.
  54. Z. Huang, Q. Lu, J. Wang, X. Chen, X. Mao, Z. He, Inhibition of the bioavailability of heavy metals in sewage sludge biochar by adding two stabilizers, PLoS One, 12 (2017) e0183617, doi: 10.1371/journal.pone.0183617.
  55. S. Muljani, B.W. Wahyudi, S. Suprihatin, K.J.R. Sumada, Synthesis of matrix Si-K-HAs gel from geothermal sludge and peat, REAKTOR, 18 (2018) 76–83.
  56. Ö. Tamer, D. Avcı, Y. Atalay, Quantum chemical characterization of N-(2-hydroxybenzylidene) acetohydrazide (HBAH): a detailed vibrational and NLO analysis, Spectrochim. Acta, Part A, 117 (2014) 78–86.
  57. F.A. Lothfy, M.F. Haron, H.A. Rafaie, Fabrication and characterization of jackfruit seed powder and polyvinyl alcohol blend as biodegradable plastic, J. Photopolym. Sci. Technol., 3 (2018) 1–5.
  58. S. Liang, Y. Han, L. Wei, A.G. McDonald, Production and characterization of bio-oil and bio-char from pyrolysis of potato peel wastes, Biomass Convers. Biorefin., 5 (2015) 237–246.
  59. N. Prakongkep, R.J. Gilkes, W. Wiriyakitnateekul, Forms and solubility of plant nutrient elements in tropical plant waste biochars, J. Plant Nutr. Soil Sci., 178 (2015) 732–740.
  60. S. Zhang, L. Tao, M. Jiang, G. Gou, Z. Zhou, Single-step synthesis of magnetic activated carbon from peanut shell, Mater. Lett., 157 (2015) 281–284.
  61. J. Lu, C. Zhang, J. Wu, One-pot synthesis of magnetic algal carbon/sulfidated nanoscale zerovalent iron composites for removal of bromated disinfection by-product, Chemosphere, 250 (2020) 126257, doi: 10.1016/j.chemosphere.2020.126257.
  62. C. Zhang, J. Lu, J. Wu, One-step green preparation of magnetic seaweed biochar/sulfidated Fe0 composite with strengthen adsorptive removal of tetrabromobisphenol A through in situ reduction, Bioresour. Technol., 307 (2020) 123170, doi: 10.1016/j. biortech.2020.123170.
  63. J. Iqbal, N.S. Shah, M. Sayed, M. Imran, N. Muhammad, F.M. Howari, S.A. Alkhoori, J.A. Khan, Z.U.H. Khan, A. Bhatnagar, Synergistic effects of activated carbon and nanozerovalent copper on the performance of hydroxyapatitealginate beads for the removal of As3+ from aqueous solution, J. Cleaner Prod., 235 (2019) 875–886.
  64. G.-X. Yang, H. Jiang, Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater, Water Res., 48 (2014) 396–405.
  65. Z. Zhou, Y.-g. Liu, S.-b. Liu, H.-y. Liu, G.-m. Zeng, X.-f. Tan, C.-p. Yang, Y. Ding, Z.-l. Yan, X.-x. Cai, Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatinmodified biochar, Chem. Eng. J., 314 (2017) 223–231.
  66. A. Mukherjee, A. Zimmerman, W. Harris, Surface chemistry variations among a series of laboratory-produced biochars, Geoderma, 163 (2011) 247–255.
  67. A. Üçer, A. Uyanik, Ş. Aygün, Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon, Sep. Purif. Technol., 47 (2006) 113–118.
  68. A. Maged, J. Iqbal, S. Kharbish, I.S. Ismael, A. Bhatnagar, Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: characterization, sorption and mechanistic studies, J. Hazard. Mater., 384 (2020) 121320, doi: 10.1016/j.jhazmat.2019.121320.
  69. H. Liu, F. Li, L. Chen, J. Ding, M. Sun, Adsorptive removal of Pb(II) ions with magnetic metal-organic frameworks from aqueous samples, Gen. Chem., 3 (2017) 134–139.
  70. K.-W. Jung, T.-U. Jeong, J.-W. Choi, K.-H. Ahn, S.-H. Lee, Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: batch and fixed-bed column performance, Bioresour. Technol., 244 (2017) 23–32.
  71. B. Özkaya, Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models, J. Hazard. Mater., 129 (2006) 158–163.
  72. L. Wang, Y. Wang, F. Ma, V. Tankpa, S. Bai, X. Guo, X. Wang, Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review, Sci. Total Environ., 668 (2019) 1298–1309.
  73. Poonam, B.S. Kumar, K. Narendra, Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent, Appl. Water Sci., 8 (2018) 119.
  74. Y. Wang, Y. Wang, L. Jiang, Freestanding carbon aerogels produced from bacterial cellulose and its Ni/MnO2/Ni(OH)2 decoration for supercapacitor electrodes, J. Appl. Electrochem., 48 (2018) 495–507.
  75. Y. Shen, P. Zhao, Q. Shao, F. Takahashi, K. Yoshikawa, In situ catalytic conversion of tar using rice husk char/ash supported nickel-iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier, Appl. Energy, 160 (2015) 808–819.
  76. R.P. Mohubedu, P.N. Diagboya, C.Y. Abasi, E.D. Dikio, F. Mtunzi, Magnetic valorization of biomass and biochar of a typical plant nuisance for toxic metals contaminated water treatment, J. Cleaner Prod., 209 (2019) 1016–1024.
  77. H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue, K. Yang, Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood, Bioresour. Technol., 197 (2015) 356–362.
  78. V. Gupta, A. Mittal, L. Krishnan, V. Gajbe, Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash, Sep. Purif. Technol., 40 (2004) 87–96.