1. L. Trakal, R. Šigut, H. Šillerová, D. Faturíková, M. Komárek, Copper removal from aqueous solution using biochar: effect of chemical activation, Arabian J. Chem., 7 (2014) 43–52.
  2. A. Baran, J. Antonkiewicz, Phytotoxicity and extractability of heavy metals from industrial waste, Environ. Prot. Eng., 43 (2017) 143–155.
  3. M.N. Chileshe, S. Syampungani, E.S. Festin, M. Tigabu, A. Daneshvar, P.C. Odén, Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: implications for pollution risk and restoration, Eur. J. For. Res., 17 (2015) 622–631.
  4. M.R. Awual, T. Yaita, S.A. El-Safty, H. Shiwaku, S. Suzuki, Y. Okamoto, Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent, Chem. Eng. J., 221 (2013) 322–330.
  5. S.A. Al-Saydeh, M.H. El-Naas, S.J. Zaidi, Copper removal from industrial wastewater: a comprehensive review, J. Ind. Eng. Chem., 56 (2017) 35–44.
  6. M.R. Awual, M. Ismael, M.D. Khaleque, T. Yaita, Ultra-trace copper(II) detection and removal from wastewater using novel meso-adsorbent, J. Ind. Eng. Chem., 20 (2014) 2332–2340.
  7. M. Araya, M. Olivares, F. Pizarro, Copper in human health, Int. J. Environ. Health, 1 (2007) 608–620.
  8. A. Shahbazi, H. Younesi, A. Badiei, Batch and fixed-bed column adsorption of Cu(II), Pb(II) and Cd(II) from aqueous solution onto functionalised SBA-15 mesoporous silica, Can. J. Chem. Eng., 91 (2013) 739–750.
  9. J. Thilagan, V. Adichakkravarthy, K. Rajsekran, C. Raja, Continuous fixed bed column adsorption of copper(II) ions from aqueous solution by calcium carbonate, Int. J. Eng. Tech. Res., 4 (2015) 413–418.
  10. M. Goyal, V.K. Rattan, D. Aggarwal, R.C. Bansal, Removal of copper from aqueous solutions by adsorption on activated carbons, Colloids Surf., A, 190 (2001) 229–238.
  11. F. Bouhamed, Z. Elouear, J. Bouzid, Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: equilibrium, kinetics and thermodynamics, J. Taiwan Inst. Chem. Eng., 43 (2012) 741–749.
  12. L. Darmayanti, S. Notodarmodjo, E. Damanhuri, Removal of copper(II) ions in aqueous solutions by sorption onto fly ash, J. Eng. Technol. Sci., 49 (2017) 546–559.
  13. E. Sočo, J. Kalembkiewicz, Removal of copper(II) and zinc(II) ions from aqueous solution by chemical treatment of coal fly ash, Croat. Chem. Acta, 88 (2015) 267–279.
  14. T. Hsu, C. Yu, C. Yeh, Adsorption of Cu2+ from water using raw and modified coal fly ashes, Fuel, 87 (2008) 1355–1359.
  15. M. Ahmaruzzaman, A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36 (2010) 327–363.
  16. V.C. Pandey, N. Singh, Impact of fly ash incorporation in soil systems, Agric. Ecosyst. Environ., 136 (2010) 16–27.
  17. H. Cho, D. Oh, K. Kim, A study on removal characteristics of heavy metals from aqueous solution by fly ash, J. Hazard. Mater., B127 (2005) 187–195.
  18. J. Ulatowska, I. Polowczyk, W. Sawiński, A. Bastrzyk, T. Koźlecki, Z. Sadowski, Use of fly ash and fly ash agglomerates for As(III) adsorption from aqueous solution, Pol. J. Chem. Technol., 16 (2014) 21–27.
  19. A.D. Papandreou, C.J. Stournaras, D. Panias, I. Paspaliaris, Adsorption of Pb(II), Zn(II) and Cr(III) on coal fly ash porous pellets, Miner. Eng., 24 (2011) 1495–1501.
  20. J. Aguilar-Carrillo, F. Garrido, L. Barrios, M.T. Garcia-Gonzalez, Sorption of As, Cd and Tl as influenced by industrial by– products applied to an acidic soil: equilibrium and kinetics experiments, Chemosphere, 65 (2006) 2377–2387.
  21. J. Wang, X. Teng, H. Wang, H. Ban, Characterizing the metal adsorption capability of a class F coal fly ash, J. Environ. Sci. Technol., 38 (2004) 6710–6715.
  22. V.K. Gupta, I. Ali, Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater, Sep. Purif. Technol., 18 (2000) 131–140.
  23. I. Polowczyk, J. Ulatowska, T. Koźlecki, A. Bastrzyk, W. Sawiński, Studies on removal of boron from aqueous solution by fly ash agglomerates, Desalination, 310 (2013) 93–101.
  24. N. Öztürk, D. Kavak, Adsorption of boron from aqueous solutions using fly ash: batch and column studies, J. Hazard. Mater., B127 (2005) 81–88.
  25. F. Ferrero, Dye removal from aqueous solution using coal fly ash for continuous flow adsorption, Clean Technol. Environ. Policy, 17 (2015) 1907–1915.
  26. U.B. Deshannavar, B.G. Katageri, M. El-Harbawi, A. Parab, K. Acharya, Fly ash as an adsorbent for the removal of reactive blue 25 dye from aqueous solutions: optimization, kinetic and isotherm investigations, Proc. Est. Acad. Sci., 66 (2017) 300–308.
  27. I. Polowczyk, J. Ulatowska, A. Bastrzyk, T. Koźlecki, P. Cyganowski, Research on Agglomeration of Fly Ash as a Method of Improving Its Utilization, J. Parker, Ed., Fly Ash: Properties, Analysis and Performance, Nova Science Publisher’s Inc., Hauppauge, NY, 2017, pp. 177–193.
  28. A.D. Papandreou, C.J. Stournaras, D. Panias, Copper and cadmium adsorption on pellets made from fried coal fly ash, J. Hazard. Mater., 148 (2007) 538–547.
  29. N. Priyantha, L.B.L. Lim, S. Wickramasooriya, C.H. Ing, Adsorption behavior of Cu(II) ions on thermally-treated peat of Muthurajawela, Sri Lanka, Water Desal. Res. J., 3 (2019) 1–15.
  30. M.L.F.A. DeCastro, M.L.B. Abad, D.A.G. Sumalinog, R.R.M. Abarca, P. Paoprasert, M.D.G. De Luna, Adsorption of Methylene Blue dye and Cu(II) ions on EDTA-modified bentonite: Isotherm, kinetic and thermodynamic studies, Sustainable Environ. Res., 28 (2018) 197–205.
  31. P. Wu, Y. Tang, Z. Cai, Dual role of coal fly ash in copper ion adsorption followed by thermal stabilization in a spinel solid solution, RSC Adv., 8 (2018) 8805–8812.
  32. A.T. Sdiri, T. Higashi, F. Jamoussi, Adsorption of copper and zinc onto natural clay in single and binary systems, Int. J. Environ. Sci. Technol., 11 (2014) 1081–1092.
  33. I. Mobasherpour, E. Salahi, M. Ebrahimi, Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto multi-walled carbon nanotubes, J. Saudi Chem. Soc., 18 (2014) 792–801.
  34. Z. Aksu, İ.A. İşoğlu, Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp, Process Biochem., 40 (2005) 3031–3044.
  35. M. Harja, G. Buema, D. Sutiman, C. Munteanu, D. Bucur, Low cost adsorbents obtained from ash for copper removal, Korean J. Chem. Eng., 29 (2012) 1735–1744.
  36. M.J.D. Low, Kinetics of chemisorptions of gases on solids, Chem. Rev., 60 (1960) 267–312.
  37. Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents: review, Sep. Purif. Technol., 29 (2000) 189–232.
  38. S. Lagergren, Zur theorie der Sogenannten adsorption geloster stoffe, Kungl. Svens. Vetenskapsakad. Handl., 24 (1898) 1–24.
  39. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  40. H.M.F. Freundlich, Über die Adsorption Lösungen, Z. Phys. Chem., 57 (1906) 385–470.
  41. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  42. B. Subramanyam, A. Das, Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means, J. Environ. Health Sci. Eng., 12 (2014) 1–6.
  43. M.M. Dubinin, L.V. Radushkevich, The equation of the characteristics curve of activated charcoal, Proc. Acad. Sci. USSR, 55 (1947) 331–333.
  44. H.C. Thomas, Heterogeneous ion exchange in a flowing system, J. Am. Chem. Soc., 66 (1944) 1664–1666.
  45. K.H. Chu, Fixed bed sorption: setting the record straight on the Bohart–Adams and Thomas models, J. Hazard. Mater., 177 (2010) 1006–1012.
  46. Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics I. A theoretical model for respirator cartage service life, Am. Ind. Hyg. Assoc. J., 45 (1984) 509–516.
  47. M. Arshadi, M.J. Amini, S. Mousavi, Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash, Water Resour. Ind., 6 (2014) 1–17.
  48. H. Demiral, C. Gűngőr, Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse, J. Cleaner Prod., 124 (2016) 103–113.
  49. N.M. Hilal, I.A. Ahmed, R.E. El-Sayed, Activated and nonactivated date pits adsorbents for the removal of copper(II) and cadmium(II) from aqueous solutions, ISRN Phys. Chem., 2012 (2012) 1–11.
  50. T. Mishra, S.K. Tiwari, Studies on sorption properties of zeolite derived from Indian fly ash, J. Hazard. Mater., 137 (2006) 299–303.
  51. T. Zehra, L.B.L. Lim, N. Priyantha, Characterization of peat samples collected from Brunei Darussalam and their evaluation as potential adsorbents for Cu(II) removal from aqueous solution, Desal. Water Treat., 57 (2016) 20889–20903.
  52. N. Feng, X. Guo, S. Liang, Adsorption study of copper(II) by chemically modified orange peel, J. Hazard. Mater., 164 (2009) 1286–1292.
  53. T. Benzaoui, A. Selatnia, D. Djabali, Adsorption of copper(II) ions from aqueous solution using bottom ash of expired drugs incineration, Adsorpt. Sci. Technol., 36 (2017) 114–129.
  54. A.R. Iftikhar, H.N. Bhatti, M.A. Hanif, R. Nadeem, Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass, J. Hazard. Mater., 161 (2009) 941–947.
  55. R. Ahmad, R. Kumar, S. Haseeb, Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: evaluation of equilibrium, isotherms, kinetics, and regeneration capacity, Arabian J. Chem., 5 (2012) 353–359.
  56. A. Annadurai, R.S. Juang, D.J. Lee, Adsorption of heavy metals from water using banana and orange peels, Water Sci. Technol., 47 (2002) 185–190.
  57. A.S.A. Aziz, L.A. Manaf, H.C. Man, N.S. Kumar, Column dynamic studies and breakthrough curve analysis for Cd(II) and Cu(II) ions adsorption onto palm oil boiler mill fly ash (POFA), Environ. Sci. Pollut. Res. Int., 21 (2014) 7996–8005.
  58. C.M. Futalan, C.C. Kan, M.L. Dalida, C. Pascua, M.W. Wan, Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite, Carbohydr. Polym., 82 (2011) 697–704.
  59. P. Suksabye, P. thiravetyan, W. Nakbanpote, Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith, J. Hazard. Mater., 160 (2008) 56–62.
  60. A. Saravanan, P.S. Kumar, M. Yaswanthraj, Modeling and analysis of paced-bed column for effective removal of zinc from aqueous solution using dual surface-modified biomass, Part. Sci. Technol., 36 (2018) 934–944.
  61. C.M. Hasfalina, R.Z. Maryam, C.A. Luqman, M. Rashid, Adsorption of copper(II) from aqueous medium in fixed-bed column by kenaf fibres, APCBEE Procedia, 3 (2012) 255–263.
  62. A. Abdolali, H.H. Ngo, W. Guo, J.L. Zhou, J. Zhang, S. Liang, S.W. Chang, D.D. Nguyen, Y. Liu, Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in lab-scale continuous fixed-bed column, Bioresour. Technol., 229 (2017) 78–87.
  63. S.J. Barnett, D.E. Macphee, E.E. Lachowski, N.J. Crammond, XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite, Cem. Concr. Res., 32 (2002) 719–730.
  64. P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, U. Rattanasak, Comparative study on the characteristics of fly ash and bottom ash geopolymers, Waste Manage., 29 (2009) 539–543.
  65. S. Coussy, D. Paktune, J. Rose, M. Benzaazoua, Arsenic speciation in cemented paste backfills and synthetic calciumsilicate-hydrates, Miner. Eng., 39 (2012) 51–61.
  66. I. García-Lodeiro, A. Palomo, A. Fernández-Jiménez, Alkaliaggregate reaction in activated fly ash systems, Cem. Concr. Res., 37 (2007) 175–183.
  67. D. Gastaldi, F. Canonico, E. Boccaleri, Ettringite and calcium sulfoaluminate cement investigation of water content by nearinfrared spectroscopy, J. Mater. Sci., 44 (2009) 5788–5794.
  68. P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan, X. Cong, Structure of calcium silicate hydrate (C-S-H): near-, mid- and far- infrared spectroscopy, J. Am. Ceram. Soc., 82 (1999) 742–748.
  69. Q.Y. Chen, M. Tyrer, C.D. Hills, X.M. Yang, P. Carey, Immobilization of heavy metal in cement-based solidification/ stabilization: a review, Waste Manage., 29 (2009) 390–403.
  70. Z. Giergiczny, A. Król, Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites, J. Hazard. Mater., 160 (2008) 247–255.