References

  1. R.A. Figueroa, A. Leonard, A.A. Mackay, Modeling tetracycline antibiotic sorption to clays, Environ. Sci. Technol., 38 (2004) 476–483.
  2. J.Q. Zhang, Y.J. Chen, F.H. Wang, B. Zhao, Adsorption characteristics of tetracycline hydrochloride onto bentonite, Chin. J. Environ. Eng., 10 (2016) 4808–4810.
  3. R. Wang, T.Z. Liu, T. Wang, The fate of antibiotics in environment and its ecotoxicology: a review, Acta Ecol. Sinica, 26 (2006) 265–270.
  4. M.C. Zhang, C.J. Huang, W. Wang, Q. Zhou, A.M. Li, X.S. Wang, Preconcentration and determination of antibiotics in environmental samples, Environ. Prot. Sci., 39 (2013) 84–87.
  5. A. Hartmann, A.C. Alder, T. Koller, R.M. Widmer, Identification of fluoroquinolone antibiotics as the main source of UMUC genotoxicity in native hospital wastewater, Environ. Toxicol. Chem., 17 (1998) 377–382.
  6. R. Wang, Y.S. Wei, Pollution and control of tetracyclines and heavy metals residues in animal manure, J. Agro-Environ. Sci., 32 (2013) 1705–1719.
  7. Q.Y. Zeng, D. Ding, X. Tan, Pollution status and sources of tetracycline antibiotics in agricultural soil in china: a review, Ecol. Environ. Sci., 27 (2018) 1774–1782.
  8. G. Hamscher, S. Sczesny, H. Höper, H. Nau, Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry, Anal. Chem., 74 (2002) 1509–1518.
  9. A.V. Moreno-Palacios, R.E. Palma-Goyes, J. Vazquez-Arenas, R.A. Torres-Palma, Bench-scale reactor for cefadroxil oxidation and elimination of its antibiotic activity using electro-generated active chlorine, J. Environ. Chem. Eng., 7 (2019) 103173–103184.
  10. B. Kakavandi, N. Bahari, R.R. Kalantary, D.E. Fard, Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: a new hybrid system, Ultrason. Sonochem., 55 (2019) 75–85.
  11. J.Q. Deng, X.D. Li, Q. Wei, Y.G. Liu, J. Liang, B. Song, Y.N. Shao, W. Huang, Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: coadsorption and mechanism, Chem. Eng. J., 387 (2020) 124097–124108.
  12. V.K. Gupta, P. Carrott, M.M.L. Ribeiro-Carrott, D. Suhas, Lowcost adsorbents: growing approach to wastewater treatment-a review, Crit. Rev. Environ. Sci. Technol., 39 (2009) 783–842.
  13. M. Chen, W.H. Tang, C.J. Ge, L.X. Peng, Effects of sugarcane bagasse-derived biochar on adsorption and desorption of ciprofloxacin in tropical soils, Chin. J Trop. Crops, 36 (2015) 2260–2268.
  14. M.L. Duan, H.C. Li, J. Gu, X.X. Tuo, W. Sun, X. Qian, X.J. Wang, Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce, Environ. Pollut., 224 (2017) 787–795.
  15. T.X. Wu, M. Zhou, J.X. Wang, H. Chen, Influence of montmorillonite and kaolinite on tetracycline adsorption, J. Agro-Environ. Sci., 28 (2009) 914–918.
  16. H.X. He, W.B. Li, H.Y. Deng, L.P. Ren, Y.F. Zhang, L. Zhu, J. Xie, T. Li, Surface characteristics of a recyclable and efficient adsorption material, Mater. Lett., 256 (2019)126658–126662.
  17. H.Y. Deng, W.B. Li, Y. Zheng, X.H. Zhu, Y.Y. Tian, W.X. Yan, Z.F. Meng, G.C. Chen, Study on the enhanced adsorption of Cu2+ in different purple soil layers by amphoteric bentonite, Earth Environ., 46 (2018) 403–409.
  18. Q.Q. Chai, S.B. Hu, J.W. Liu, D.C. Li, J. Wang, F.J. He, Effects of the organic modification on the attapulgite adsorption for tetracycline antibiotics, Environ. Monit. Chin., 34 (2018) 95–103.
  19. Y.G. Chen, N.L. Chen, D.B. Wu, W.M. Ye, Adsorption property of Eu(III) on bentonite modified by biochar, J. Tongji Univ., 47 (2019) 688–694.
  20. Z.C. Li, Q.S. Wei, Z.X. Luo, L.F. Xu, Y.N. Liu, C.Z. Yan, J.S. Liu, Combination effects of pH, solution/soil ratio and inherent organic matter on the adsorption of tetracycline by sediments, J. Agro-Environ. Sci., 36 (2017) 761–767.
  21. W. Zhang, Progress in the application of bentonite to the adsorption for inorganic pollutants in water pollution control, Ind. Water Treat., 38 (2018) 10–16.
  22. Y.F. Zhang, W.B. Li, L. Zhu, J. Xie, H.Y. Deng, L. Kang, W. Liu, Z.F. Meng, Difference of adding different compositely modified amphipathic maifanite on Cu2+ adsorption, Desal. Water Treat, 178 (2020) 203–210.
  23. F. Lian, Z.G. Song, Z.Q. Liu, L.Y. Zhu, B.S. Xing, Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu2+ and pH, Environ. Pollut., 178 (2013) 264–270.
  24. C. Ling, F.Q. Liu, M.M. Wei, H. Qiu, Effect of co-existing Cu(II)/Ca(II) on the adsorption of tetracycline onto IRC748 resin, Environ. Chem., 35 (2016) 884–892.
  25. A.T. Xie, J.Y. Cui, Y.Y. Chen, J.H. Lang, C.X. Li, Y.S. Yan, J.D. Dai, Simultaneous activation and magnetization toward facile preparation of auricularia-based magnetic porous carbon for efficient removal of tetracycline, J. Alloys Compd., 784 (2019) 76–87.
  26. W.B. Li, X.Y. Chen, H.Y. Deng, D. Wang, J.C. Jiang, Y.Z. Zeng, L. Kang, Z.F. Meng, Effects of exogenous biochar on tetracycline adsorption by different riverbank soils from Sichuan and Chongqing section of Jialing river, Chin. J. Soil Sci., 51 (2020) 46–54.