1. S. Kasavan, A.F. Mohamed, S. Abdul Halim, Drivers of food waste generation: case study of island-based hotels in Langkawi, Malaysia, Waste Manage., 91 (2019) 72–79.
  2. S.K. Pramanik, F.B. Suja, S.M. Zain, B.K. Pramanik, The anaerobic digestion process of biogas production from food waste: prospects and constraints, Bioresour. Technol. Rep., 8 (2019) 1–15, doi: 10.1016/j.biteb.2019.100310.
  3. S.K. Pramanik, F.B. Suja, M. Porhemmat, B.K. Pramanik, Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste, Processes, 7 (2019) 1–16, doi: 10.3390/pr7090600.
  4. S.S. Khamis, H. Purwanto, A. Naili Rozhan, M. Abd Rahman, H. Mohd Salleh, Characterization of municipal solid waste in Malaysia for energy recovery, IOP Conf. Ser.: Earth Environ. Sci., 264 (2019) 1–6, doi: 10.1088/1755-1315/264/1/012003.
  5. P.C. Slorach, H.K. Jeswani, R. Cuéllar-Franca, A. Azapagic, Environmental sustainability of anaerobic digestion of household food waste, J. Environ. Manage., 236 (2019) 798–814.
  6. L.A. Manaf, M.A.A. Samah, N.I.M. Zukki, Municipal solid waste management in Malaysia: practices and challenges, Waste Manage., 29 (2009) 2902–2906.
  7. Y. Meng, S. Li, H. Yuan, D. Zou, Y. Liu, B. Zhu, A. Chufo, M. Jaffar, X. Li, Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste, Bioresour. Technol., 185 (2015) 7–13.
  8. S.K. Cho, W.T. Im, D.H. Kim, M.H. Kim, H.S. Shin, S.E. Oh, Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis, Bioresour. Technol., 131 (2013) 210–217.
  9. S.K. Pramanik, F.B. Suja, B.K. Pramanik, Opportunity of biogas production from solid organic wastes through anaerobic digestion, E3S Web Conf., 65 (2018) 1–10.
  10. S.K. Pramanik, F.B. Suja, B.K. Pramanik, Effects of hydraulic retention time on the process performance and microbial community structure of an anaerobic single-stage semi-pilot scale reactor for the treatment of food waste, Int. Biodeterior. Biodegrad., 152 (2020) 1–11, doi: 10.1016/j.ibiod.2020.104999.
  11. S. Supaphol, S.N. Jenkins, P. Intomo, I.S. Waite, A.G. O’Donnell, Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste, Bioresour. Technol., 102 (2011) 4021–4027.
  12. L. Li, Q. He, Y. Wei, Q. He, X. Peng, Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste, Bioresour. Technol., 171 (2014) 491–494.
  13. L. Li, Q. He, Y. Ma, X. Wang, X. Peng, Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: relationship between community structure and process stability, Bioresour. Technol., 189 (2015) 113–120.
  14. L. Li, Q. He, Y. Ma, X. Wang, X. Peng, A mesophilic anaerobic digester for treating food waste: process stability and microbial community analysis using pyrosequencing, Microb. Cell Fact., 15 (2016) 1–11, doi: 10.1186/s12934-016-0466-y.
  15. V. Razaviarani, I.D. Buchanan, Reactor performance and microbial community dynamics during anaerobic co-digestion of municipal wastewater sludge with restaurant grease waste at steady state and overloading stages, Bioresour. Technol., 172 (2014) 232–240.
  16. R.D.A. Cayetano, J.H. Park, S. Kang, S.H. Kim, Food waste treatment in an anaerobic dynamic membrane bioreactor (AnDMBR): performance monitoring and microbial community analysis, Bioresour. Technol., 280 (2019) 158–164.
  17. N. Sahu, G. Sharma, B. Chandrashekhar, N.B. Jadeja, A. Kapley, R.A. Pandey, A. Sharma, Performance evaluation of methanogenic digester using kitchen waste for validation of optimized hydrolysis conditions for reduction in ammonia accumulation, Renewable Energy, 139 (2019) 110–119.
  18. H. Chen, W. Wang, L. Xue, C. Chen, G. Liu, R. Zhang, Effects of ammonia on anaerobic digestion of food waste: process performance and microbial community, Energy Fuels, 30 (2016) 5749–5757.
  19. R. Ganesh, M. Torrijos, P. Sousbie, A. Lugardon, J.P. Steyer, J.P. Delgenes, Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance, Waste Manage., 34 (2014) 875–885.
  20. C. Gou, Z. Yang, J. Huang, H. Wang, H. Xu, L. Wang, Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste, Chemosphere, 105 (2014) 146–151.
  21. Y. Hu, T. Kobayashi, W. Qi, H. Oshibe, K.Q. Xu, Effect of temperature and organic loading rate on siphon-driven selfagitated anaerobic digestion performance for food waste treatment, Waste Manage., 74 (2018) 150–157.
  22. J.K. Kim, B.R. Oh, Y.N. Chun, S.W. Kim, Effects of temperature and hydraulic retention time on anaerobic digestion of food waste, J. Biosci. Bioeng., 102 (2006) 328–332.
  23. A. Schievano, A. Tenca, B. Scaglia, G. Merlino, A. Rizzi, D. Da, R. Oberti, F. Adani, R. Group, P. Vegetale, V. Celoria, I. Agraria, V. Celoria, Two-stage vs. single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies, Environ. Sci. Technol., 46 (2012) 8502–8510.
  24. G. Kumar, P. Sivagurunathan, J.H. Park, S.H. Kim, Anaerobic digestion of food waste to methane at various organic loading rates (OLRs) and hydraulic retention times (HRTs): thermophilic vs. mesophilic regimes, Environ. Eng. Res., 21 (2016) 69–73.
  25. X. Shi, X. Guo, J. Zuo, Y. Wang, M. Zhang, A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: process stability and microbial community structure shifts, Waste Manage., 75 (2018) 261–269.
  26. B. Xiao, Y. Qin, W. Zhang, J. Wu, H. Qiang, J. Liu, Y.-Y. Li, Temperature-phased anaerobic digestion of food waste: a comparison with single-stage digestions based on performance and energy balance, Bioresour. Technol., 249 (2018) 826–834.
  27. J. Zhang, K.C. Loh, W. Li, J.W. Lim, Y. Dai, Y.W. Tong, Threestage anaerobic digester for food waste, Appl. Energy, 194 (2017) 287–295.
  28. K. Svensson, L. Paruch, J.C. Gaby, R. Linjordet, Feeding frequency influences process performance and microbial community composition in anaerobic digesters treating steam exploded food waste, Bioresour. Technol., 269 (2018) 276–284.
  29. J. De Vrieze, M.E.R. Christiaens, D. Walraedt, A. Devooght, U.Z. Ijaz, N. Boon, Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure, Water Res., 111 (2017) 109–117.
  30. D.G. Mulat, H.F. Jacobi, A. Feilberg, A.P.S. Adamsen, H.-H. Richnow, M. Nikolauszd, Changing feeding regimes to demonstrate flexible biogas production : effects on process performance, microbial community structure, and methanogenesis pathways, Appl. Environ. Microbiol., 82 (2016) 438–449.
  31. R.M. Ziels, D.A.C. Beck, H.D. Stensel, Long-chain fatty acid feeding frequency in anaerobic codigestion impacts syntrophic community structure and biokinetics, Water Res., 117 (2017) 218–229.
  32. Z. Lv, A.F. Leite, H. Harms, H.H. Richnow, J. Liebetrau, M. Nikolausz, Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods, Anaerobe, 29 (2014) 91–99.
  33. A. Conklin, H.D. Stensel, J. Ferguson, Growth kinetics and competition between methanosarcina and methanosaeta in mesophilic anaerobic digestion, Water Environ. Res., 78 (2006) 486–496.
  34. D. Krishna, A.S. Kalamdhad, Pre-treatment and anaerobic digestion of food waste for high rate methane production – a review, J. Environ. Chem. Eng., 2 (2014) 1821–1830.
  35. B. Deepanraj, V. Sivasubramanian, S. Jayaraj, Experimental and kinetic study on anaerobic digestion of food waste: the effect of total solids and pH, J. Renewable Sustainable Energy, 7 (2015) 1–13, doi: 10.1063/1.4935559.
  36. L. Li, Q. He, X. Zhao, D. Wu, X. Wang, X. Peng, Anaerobic digestion of food waste: correlation of kinetic parameters with operational conditions and process performance, Biochem. Eng. J., 130 (2018) 1–9.
  37. Y. Zhang, Z. Yang, R. Xu, Y. Xiang, M. Jia, J. Hu, Y. Zheng, W.P. Xiong, J. Cao, Enhanced mesophilic anaerobic digestion of waste sludge with the iron nanoparticles addition and kinetic analysis, Sci. Total Environ., 683 (2019) 124–133.
  38. R. Bala, G.K. Gupta, B.V. Dasgupta, M.K. Mondal, Pretreatment optimisation and kinetics of batch anaerobic digestion of liquidised OFMSW treated with NaOH: models verification with experimental data, J. Environ. Manage., 237 (2019) 313–321.
  39. D.D. Nguyen, B.H. Jeon, J.H. Jeung, E.R. Rene, J.R. Banu, B. Ravindran, C.M. Vu, H.H. Ngo, W. Guo, S.W. Chang, Thermophilic anaerobic digestion of model organic wastes: evaluation of biomethane production and multiple kinetic models analysis, Bioresour. Technol., 280 (2019) 269–276.
  40. Y. Li, Y. Jin, H. Li, A. Borrion, Z. Yu, J. Li, Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste, Appl. Energy, 213 (2018) 136–147.
  41. EPA, Regulatory Monitoring and Testing, Water and Wastewater Sampling, Environment Protection Authority, Adelaide, 2007.
  42. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington DC, 2005.
  43. AOAC, Method 991.36, 981.10, 923.03 and 950.46, Official Methods of Analysis, 16th ed., Association of Official Analytical Chemists, Washington, DC, 1995.
  44. A. Donoso-Bravo, S.I. Pérez-Elvira, F. Fdz-Polanco, Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes, Chem. Eng. J., 160 (2010) 607–614.
  45. G.K. Kafle, L. Chen, Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models, Waste Manage., 48 (2016) 492–502.
  46. Z. Zahan, M.Z. Othman, T.H. Muster, Anaerobic digestion/ co-digestion kinetic potentials of different agro-industrial wastes: a comparative batch study for C/N optimisation, Waste Manage., 71 (2018) 663–674.
  47. C. Zhang, H. Su, J. Baeyens, T. Tan, Reviewing the anaerobic digestion of food waste for biogas production, Renewable Sustainable Energy Rev., 38 (2014) 383–392.
  48. Y. Arij, S. Fatihah, A.R. Rakmi, Performance of pilot scale anaerobic biofilm digester (ABD) for the treatment of leachate from a municipal waste transfer station, Bioresour. Technol., 260 (2018) 213–220.
  49. C. Liu, W. Wang, N. Anwar, Z. Ma, G. Liu, R. Zhang, Effect of organic loading rate on anaerobic digestion of food waste under mesophilic and thermophilic conditions, Energy Fuels, 31 (2017) 2976–2984.
  50. T. Kobayashi, Y.Y. Li, Performance and characterization of a newly developed self-agitated anaerobic reactor with biological desulfurization, Bioresour. Technol., 102 (2011) 5580–5588.
  51. J.H. Park, G. Kumar, Y.M. Yun, J.C. Kwon, S.H. Kim, Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste, Bioresour. Technol., 248 (2018) 134–140.
  52. X.-S. Shi, J.-J. Dong, J.-H. Yu, H. Yin, S.-M. Hu, S.-X. Huang, X.-Z. Yuan, Effect of hydraulic retention time on anaerobic digestion of wheat straw in the semicontinuous continuous stirred-tank reactors, Biomed Res. Int., 2017 (2017) 1–6, doi: 10.1155/2017/2457805.
  53. M. Jabeen, Zeshan, S. Yousaf, M.R. Haider, R.N. Malik, Highsolids anaerobic co-digestion of food waste and rice husk at different organic loading rates, Int. Biodeterior. Biodegrad., 102 (2015) 149–153.
  54. J. De Vrieze, W. Verstraete, N. Boon, Repeated pulse feeding induces functional stability in anaerobic digestion, Microb. Biotechnol., 6 (2013) 414–424.
  55. Y. Li, L. Feng, R. Zhang, Y. He, X. Liu, X. Xiao, X. Ma, C. Chen, G. Liu, Influence of inoculum source and pre-incubation on biomethane potential of chicken manure and corn stover, Appl. Biochem. Biotechnol., 171 (2013) 117–127.
  56. C. Mao, X. Wang, J. Xi, Y. Feng, G. Ren, Linkage of kinetic parameters with process parameters and operational conditions during anaerobic digestion, Energy, 135 (2017) 352–360.